Suppr超能文献

临界组织使受体网络能够处理时变信号。

Organization at criticality enables processing of time-varying signals by receptor networks.

机构信息

Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany.

出版信息

Mol Syst Biol. 2020 Feb;16(2):e8870. doi: 10.15252/msb.20198870.

Abstract

How cells utilize surface receptors for chemoreception is a recurrent question spanning between physics and biology over the past few decades. However, the dynamical mechanism for processing time-varying signals is still unclear. Using dynamical systems formalism to describe criticality in non-equilibrium systems, we propose generic principle for temporal information processing through phase space trajectories using dynamic transient memory. In contrast to short-term memory, dynamic memory generated via "ghost" attractor enables signal integration depending on stimulus history and thereby uniquely promotes integrating and interpreting complex temporal growth factor signals. We argue that this is a generic feature of receptor networks, the first layer of the cell that senses the changing environment. Using the experimentally established epidermal growth factor sensing system, we propose how recycling could provide self-organized maintenance of the critical receptor concentration at the plasma membrane through a simple, fluctuation-sensing mechanism. Processing of non-stationary signals, a feature previously attributed only to neural networks, thus uniquely emerges for receptor networks organized at criticality.

摘要

几十年来,细胞如何利用表面受体进行化学感觉一直是一个跨越物理学和生物学的反复出现的问题。然而,用于处理时变信号的动态机制仍不清楚。我们使用动力系统形式主义来描述非平衡系统中的临界性,通过相空间轨迹利用动态瞬态记忆提出了用于时间信息处理的通用原理。与短期记忆相反,通过“幽灵”吸引子产生的动态记忆能够根据刺激历史进行信号整合,从而独特地促进整合和解释复杂的时间增长因子信号。我们认为这是受体网络的一个通用特征,受体网络是细胞中感知不断变化的环境的第一层。使用实验建立的表皮生长因子感应系统,我们提出了通过简单的、基于波动的感应机制,回收如何为质膜处临界受体浓度的自我组织维护提供支持。非平稳信号的处理,以前仅归因于神经网络的特征,因此独特地出现在组织在临界点的受体网络中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0155/7036718/fa41a87fed1b/MSB-16-e8870-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验