Suppr超能文献

运用网络分析了解印度青少年的抑郁和物质使用情况。

Applying network analysis to understand depression and substance use in Indian adolescents.

机构信息

Department of Psychology, Harvard University, United States; Department of Psychology, University of Pennsylvania, United States.

Department of Psychology, Harvard University, United States.

出版信息

J Affect Disord. 2020 Mar 15;265:278-286. doi: 10.1016/j.jad.2020.01.025. Epub 2020 Jan 10.

Abstract

INTRODUCTION

Network analysis has been used to better understand relationships between depressive symptoms. Existing work has rarely examined networks of adolescents or individuals in non-western countries.

METHODS

We used data from 13,035 adolescents (52.5% male; Mage=13.8) from Bihar, a low-resource state in India. Depression was measured using the Patient Health Questionnaire-9, and substance use was measured using a questionnaire adapted from the World Health Organization. We modeled a network of depressive symptoms and a network examining connections between depressive symptoms and substance use.

RESULTS

The most commonly reported depressive symptoms were sleep problems, poor appetite, and low energy. In the depression network, feeling like a failure and sad mood were the most central symptoms, and somatic symptoms clustered together. To our surprise, depressive symptoms were only weakly associated with substance use.

LIMITATIONS

Our study uses cross-sectional data, which are not sufficient to draw causal inferences about the relationships between symptoms. Additionally, we used an exploratory data-driven approach, and we did not pose a priori hypotheses about the relationships between symptoms.

DISCUSSION

Our findings suggest that feelings like a failure and sad mood are highly central symptoms in Indian adolescents; future research may examine if these symptoms are strong targets for intervention. Sad mood has commonly been identified as a central symptom of depression in western samples, while feeling like a failure has not. We offer avenues for future research, illustrating how network analysis may enhance our ability to understand, prevent, and treat psychopathology in LMICs.

摘要

介绍

网络分析已被用于更好地理解抑郁症状之间的关系。现有研究很少关注青少年或非西方国家人群的网络。

方法

我们使用了来自印度比哈尔邦的 13035 名青少年(52.5%为男性;平均年龄=13.8 岁)的数据。抑郁采用 PHQ-9 量表进行衡量,物质使用采用世界卫生组织调查问卷进行衡量。我们构建了抑郁症状网络和探讨抑郁症状与物质使用之间联系的网络。

结果

报告最多的抑郁症状是睡眠问题、食欲不振和精力不足。在抑郁网络中,失败感和悲伤情绪是最核心的症状,躯体症状聚集在一起。令我们惊讶的是,抑郁症状与物质使用之间的关联很弱。

局限性

我们的研究使用的是横断面数据,不足以对症状之间的关系进行因果推断。此外,我们采用了探索性的数据驱动方法,没有对症状之间的关系提出先验假设。

讨论

我们的研究结果表明,失败感和悲伤情绪是印度青少年中高度核心的症状;未来的研究可能会检验这些症状是否是干预的重要目标。在西方样本中,悲伤情绪通常被认为是抑郁的核心症状,而失败感则没有。我们提供了未来研究的途径,展示了网络分析如何增强我们在 LMIC 中理解、预防和治疗精神病理学的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验