Suppr超能文献

基于扭曲外尔半金属的可调谐无磁光隔离

Tunable magnetless optical isolation with twisted Weyl semimetals.

作者信息

Chistyakov Vladislav A, Asadchy Viktar S, Fan Shanhui, Alù Andrea, Krasnok Alex

机构信息

Saint-Petersburg, 191002, Russia.

Department of Electronics and Nanoengineering, Aalto University, 02150, Espoo, Finland.

出版信息

Nanophotonics. 2023 Jul 12;12(16):3333-3340. doi: 10.1515/nanoph-2023-0241. eCollection 2023 Aug.

Abstract

Weyl semimetals hold great promise in revolutionizing nonreciprocal optical components due to their unique topological properties. By exhibiting nonreciprocal magneto-optical effects without necessitating an external magnetic field, these materials offer remarkable miniaturization opportunities and reduced energy consumption. However, their intrinsic topological robustness poses a challenge for applications demanding tunability. In this work, we introduce an innovative approach to enhance the tunability of their response, utilizing multilayered configurations of twisted anisotropic Weyl semimetals. Our design enables controlled and reversible isolation by adjusting the twist angle between the anisotropic layers. When implemented in the Faraday geometry within the mid-IR frequency range, our design delivers impressive isolation, exceeding 50 dB, while maintaining a minimal insertion loss of just 0.33 dB. Moreover, the in-plane anisotropy of Weyl semimetals eliminates one or both polarizers of conventional isolator geometry, significantly reducing the overall dimensions. These results set the stage for creating highly adaptable, ultra-compact optical isolators that can propel the fields of integrated photonics and quantum technology applications to new heights.

摘要

由于其独特的拓扑性质,外尔半金属在革新非互易光学元件方面具有巨大潜力。这些材料无需外部磁场就能展现出非互易磁光效应,提供了显著的小型化机会并降低了能耗。然而,它们固有的拓扑鲁棒性对要求可调谐性的应用构成了挑战。在这项工作中,我们引入了一种创新方法来增强其响应的可调谐性,利用扭曲各向异性外尔半金属的多层结构。我们的设计通过调整各向异性层之间的扭曲角实现可控且可逆的隔离。当在中红外频率范围内的法拉第几何结构中实施时,我们的设计实现了超过50 dB的令人印象深刻的隔离度,同时保持仅0.33 dB的最小插入损耗。此外,外尔半金属的面内各向异性消除了传统隔离器几何结构中的一个或两个偏振器,显著减小了整体尺寸。这些结果为制造高度适应性强、超紧凑的光学隔离器奠定了基础,可将集成光子学和量子技术应用领域推向新高度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7679/11614334/11517c166c7c/j_nanoph-2023-0241_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验