Kumar Praveen, Berhaut Christopher L, Zapata Dominguez Diana, De Vito Eric, Tardif Samuel, Pouget Stéphanie, Lyonnard Sandrine, Jouneau Pierre-Henri
University Grenoble Alpes, CEA, IRIG-MEM, 38000, Grenoble, France.
University Grenoble Alpes, CEA, IRIG-SyMMES, 38000, Grenoble, France.
Small. 2020 Mar;16(11):e1906812. doi: 10.1002/smll.201906812. Epub 2020 Feb 24.
Failure mechanisms associated with silicon-based anodes are limiting the implementation of high-capacity lithium-ion batteries. Understanding the aging mechanism that deteriorates the anode performance and introducing novel-architectured composites offer new possibilities for improving the functionality of the electrodes. Here, the characterization of nano-architectured composite anode composed of active amorphous silicon domains (a-Si, 20 nm) and crystalline iron disilicide (c-FeSi , 5-15 nm) alloyed particles dispersed in a graphite matrix is reported. This unique hierarchical architecture yields long-term mechanical, structural, and cycling stability. Using advanced electron microscopy techniques, the nanoscale morphology and chemical evolution of the active particles upon lithiation/delithiation are investigated. Due to the volumetric variations of Si during lithiation/delithiation, the morphology of the a-Si/c-FeSi alloy evolves from a core-shell to a tree-branch type structure, wherein the continuous network of the active a-Si remains intact yielding capacity retention of 70% after 700 cycles. The root cause of electrode polarization, initial capacity fading, and electrode swelling is discussed and has profound implications for the development of stable lithium-ion batteries.
与硅基负极相关的失效机制限制了高容量锂离子电池的应用。了解导致负极性能恶化的老化机制并引入新型结构复合材料为改善电极功能提供了新的可能性。在此,报道了一种纳米结构复合负极的表征,该负极由分散在石墨基体中的活性非晶硅域(a-Si,20纳米)和结晶二硅化铁(c-FeSi₂,5-15纳米)合金颗粒组成。这种独特的分级结构产生了长期的机械、结构和循环稳定性。使用先进的电子显微镜技术,研究了锂化/脱锂过程中活性颗粒的纳米级形态和化学演变。由于锂化/脱锂过程中硅的体积变化,a-Si/c-FeSi₂合金的形态从核壳型演变为树枝型结构,其中活性a-Si的连续网络保持完整,700次循环后容量保持率为70%。讨论了电极极化、初始容量衰减和电极膨胀的根本原因,这对稳定锂离子电池的开发具有深远意义。