Suppr超能文献

通过机器学习从化学结构预测能质材料的结晶密度。

Predicting Energetics Materials' Crystalline Density from Chemical Structure by Machine Learning.

机构信息

Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.

Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.

出版信息

J Chem Inf Model. 2021 May 24;61(5):2147-2158. doi: 10.1021/acs.jcim.0c01318. Epub 2021 Apr 26.

Abstract

To expedite new molecular compound development, a long-sought goal within the chemistry community has been to predict molecules' bulk properties of interest a priori to synthesis from a chemical structure alone. In this work, we demonstrate that machine learning methods can indeed be used to directly learn the relationship between chemical structures and bulk crystalline properties of molecules, even in the absence of any crystal structure information or quantum mechanical calculations. We focus specifically on a class of organic compounds categorized as energetic materials called high explosives (HE) and predicting their crystalline density. An ongoing challenge within the chemistry machine learning community is deciding how best to featurize molecules as inputs into machine learning models-whether expert handcrafted features or learned molecular representations via graph-based neural network models-yield better results and why. We evaluate both types of representations in combination with a number of machine learning models to predict the crystalline densities of HE-like molecules curated from the Cambridge Structural Database, and we report the performance and pros and cons of our methods. Our message passing neural network (MPNN) based models with learned molecular representations generally perform best, outperforming current state-of-the-art methods at predicting crystalline density and performing well even when testing on a data set not representative of the training data. However, these models are traditionally considered black boxes and less easily interpretable. To address this common challenge, we also provide a comparison analysis between our MPNN-based model and models with fixed feature representations that provides insights as to what features are learned by the MPNN to accurately predict density.

摘要

为了加速新分子化合物的开发,化学界长期以来一直致力于从化学结构本身就能够预测出分子的感兴趣的大块性质,这是一个梦寐以求的目标。在这项工作中,我们证明了机器学习方法确实可以用来直接学习化学结构与分子大块晶体性质之间的关系,即使在没有任何晶体结构信息或量子力学计算的情况下也是如此。我们特别关注一类被归类为高能材料的有机化合物,称为高爆炸药(HE),并预测它们的晶体密度。化学机器学习界的一个持续挑战是决定如何最好地将分子特征化作为机器学习模型的输入——是专家手工制作的特征还是通过基于图的神经网络模型学习的分子表示——可以产生更好的结果,以及原因。我们评估了这两种类型的表示形式与许多机器学习模型相结合,以预测从剑桥结构数据库中挑选的 HE 类分子的晶体密度,并报告了我们方法的性能、优缺点。我们基于消息传递神经网络(MPNN)的模型具有学习的分子表示形式,通常表现最好,在预测晶体密度方面优于当前最先进的方法,即使在测试数据集与训练数据没有代表性的情况下也能表现良好。然而,这些模型传统上被认为是黑盒子,不太容易解释。为了解决这个常见的挑战,我们还提供了基于 MPNN 的模型与具有固定特征表示的模型之间的比较分析,该分析提供了有关 MPNN 学习哪些特征来准确预测密度的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验