Suppr超能文献

通过特征嵌入学习学生网络。

Learning Student Networks via Feature Embedding.

作者信息

Chen Hanting, Wang Yunhe, Xu Chang, Xu Chao, Tao Dacheng

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Jan;32(1):25-35. doi: 10.1109/TNNLS.2020.2970494. Epub 2021 Jan 4.

Abstract

Deep convolutional neural networks have been widely used in numerous applications, but their demanding storage and computational resource requirements prevent their applications on mobile devices. Knowledge distillation aims to optimize a portable student network by taking the knowledge from a well-trained heavy teacher network. Traditional teacher-student-based methods used to rely on additional fully connected layers to bridge intermediate layers of teacher and student networks, which brings in a large number of auxiliary parameters. In contrast, this article aims to propagate information from teacher to student without introducing new variables that need to be optimized. We regard the teacher-student paradigm from a new perspective of feature embedding. By introducing the locality preserving loss, the student network is encouraged to generate the low-dimensional features that could inherit intrinsic properties of their corresponding high-dimensional features from the teacher network. The resulting portable network, thus, can naturally maintain the performance as that of the teacher network. Theoretical analysis is provided to justify the lower computation complexity of the proposed method. Experiments on benchmark data sets and well-trained networks suggest that the proposed algorithm is superior to state-of-the-art teacher-student learning methods in terms of computational and storage complexity.

摘要

深度卷积神经网络已在众多应用中广泛使用,但其对存储和计算资源的高要求阻碍了它们在移动设备上的应用。知识蒸馏旨在通过从训练良好的大型教师网络中提取知识来优化便携式学生网络。传统的基于师生的方法过去常常依赖额外的全连接层来连接教师和学生网络的中间层,这引入了大量辅助参数。相比之下,本文旨在在不引入需要优化的新变量的情况下,将信息从教师网络传播到学生网络。我们从特征嵌入的新视角看待师生范式。通过引入局部保持损失,鼓励学生网络生成能够从教师网络继承其相应高维特征固有属性的低维特征。由此产生的便携式网络因此能够自然地保持与教师网络相同的性能。提供了理论分析来证明所提方法较低的计算复杂度。在基准数据集和训练良好的网络上进行的实验表明,所提算法在计算和存储复杂度方面优于现有最先进的师生学习方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验