Suppr超能文献

相似文献

3
A Cascade-SEME network for COVID-19 detection in chest x-ray images.
Med Phys. 2021 May;48(5):2337-2353. doi: 10.1002/mp.14711. Epub 2021 Mar 29.
4
CoroDet: A deep learning based classification for COVID-19 detection using chest X-ray images.
Chaos Solitons Fractals. 2021 Jan;142:110495. doi: 10.1016/j.chaos.2020.110495. Epub 2020 Nov 23.
5
A deep learning approach using effective preprocessing techniques to detect COVID-19 from chest CT-scan and X-ray images.
Comput Biol Med. 2021 Dec;139:105014. doi: 10.1016/j.compbiomed.2021.105014. Epub 2021 Nov 4.
7
A Noise-Robust Framework for Automatic Segmentation of COVID-19 Pneumonia Lesions From CT Images.
IEEE Trans Med Imaging. 2020 Aug;39(8):2653-2663. doi: 10.1109/TMI.2020.3000314.
8
A Deep Learning Model for Diagnosing COVID-19 and Pneumonia through X-ray.
Curr Med Imaging. 2023;19(4):333-346. doi: 10.2174/1573405618666220610093740.
9
Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images.
Chaos Solitons Fractals. 2021 Apr;145:110749. doi: 10.1016/j.chaos.2021.110749. Epub 2021 Feb 10.
10
Thoracic imaging tests for the diagnosis of COVID-19.
Cochrane Database Syst Rev. 2020 Sep 30;9:CD013639. doi: 10.1002/14651858.CD013639.pub2.

引用本文的文献

3
Disclosure control of machine learning models from trusted research environments (TRE): New challenges and opportunities.
Heliyon. 2023 Apr 3;9(4):e15143. doi: 10.1016/j.heliyon.2023.e15143. eCollection 2023 Apr.
4
Review on the Evaluation and Development of Artificial Intelligence for COVID-19 Containment.
Sensors (Basel). 2023 Jan 3;23(1):527. doi: 10.3390/s23010527.
5
Multi-attention representation network partial domain adaptation for COVID-19 diagnosis.
Appl Soft Comput. 2022 Aug;125:109205. doi: 10.1016/j.asoc.2022.109205. Epub 2022 Jun 23.
6
Automated COVID-19 diagnosis and prognosis with medical imaging and who is publishing: a systematic review.
Phys Eng Sci Med. 2022 Mar;45(1):13-29. doi: 10.1007/s13246-021-01093-0. Epub 2021 Dec 17.
7
Pay attention to doctor-patient dialogues: Multi-modal knowledge graph attention image-text embedding for COVID-19 diagnosis.
Inf Fusion. 2021 Nov;75:168-185. doi: 10.1016/j.inffus.2021.05.015. Epub 2021 Jun 1.

本文引用的文献

1
COVID-19: Automatic Detection of the Novel Coronavirus Disease From CT Images Using an Optimized Convolutional Neural Network.
IEEE Trans Industr Inform. 2021 Feb 5;17(9):6480-6488. doi: 10.1109/TII.2021.3057524. eCollection 2021 Sep.
2
EDL-COVID: Ensemble Deep Learning for COVID-19 Case Detection From Chest X-Ray Images.
IEEE Trans Industr Inform. 2021 Feb 8;17(9):6539-6549. doi: 10.1109/TII.2021.3057683. eCollection 2021 Sep.
3
An Effective Deep Neural Network for Lung Lesions Segmentation From COVID-19 CT Images.
IEEE Trans Industr Inform. 2021 Feb 12;17(9):6528-6538. doi: 10.1109/TII.2021.3059023. eCollection 2021 Sep.
4
Dynamic-Fusion-Based Federated Learning for COVID-19 Detection.
IEEE Internet Things J. 2021 Feb 4;8(21):15884-15891. doi: 10.1109/JIOT.2021.3056185. eCollection 2021 Nov 1.
5
Meta-Learning in Neural Networks: A Survey.
IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):5149-5169. doi: 10.1109/TPAMI.2021.3079209. Epub 2022 Aug 4.
6
An Uncertainty-Aware Transfer Learning-Based Framework for COVID-19 Diagnosis.
IEEE Trans Neural Netw Learn Syst. 2021 Apr;32(4):1408-1417. doi: 10.1109/TNNLS.2021.3054306. Epub 2021 Apr 2.
7
Multiscale Attention Guided Network for COVID-19 Diagnosis Using Chest X-Ray Images.
IEEE J Biomed Health Inform. 2021 May;25(5):1336-1346. doi: 10.1109/JBHI.2021.3058293. Epub 2021 May 11.
8
Anam-Net: Anamorphic Depth Embedding-Based Lightweight CNN for Segmentation of Anomalies in COVID-19 Chest CT Images.
IEEE Trans Neural Netw Learn Syst. 2021 Mar;32(3):932-946. doi: 10.1109/TNNLS.2021.3054746. Epub 2021 Mar 1.
9
COVID-19-associated coagulopathy: thromboembolism prophylaxis and poor prognosis in ICU.
Exp Hematol Oncol. 2021 Feb 1;10(1):6. doi: 10.1186/s40164-021-00202-9.
10
Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study.
Lancet Digit Health. 2019 Sep;1(5):e232-e242. doi: 10.1016/S2589-7500(19)30108-6. Epub 2019 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验