Meacham-Hensold Katherine, Fu Peng, Wu Jin, Serbin Shawn, Montes Christopher M, Ainsworth Elizabeth, Guan Kaiyu, Dracup Evan, Pederson Taylor, Driever Steven, Bernacchi Carl
Department of Plant Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
J Exp Bot. 2020 Apr 6;71(7):2312-2328. doi: 10.1093/jxb/eraa068.
Photosynthesis is currently measured using time-laborious and/or destructive methods which slows research and breeding efforts to identify crop germplasm with higher photosynthetic capacities. We present a plot-level screening tool for quantification of photosynthetic parameters and pigment contents that utilizes hyperspectral reflectance from sunlit leaf pixels collected from a plot (~2 m×2 m) in <1 min. Using field-grown Nicotiana tabacum with genetically altered photosynthetic pathways over two growing seasons (2017 and 2018), we built predictive models for eight photosynthetic parameters and pigment traits. Using partial least squares regression (PLSR) analysis of plot-level sunlit vegetative reflectance pixels from a single visible near infra-red (VNIR) (400-900 nm) hyperspectral camera, we predict maximum carboxylation rate of Rubisco (Vc,max, R2=0.79) maximum electron transport rate in given conditions (J1800, R2=0.59), maximal light-saturated photosynthesis (Pmax, R2=0.54), chlorophyll content (R2=0.87), the Chl a/b ratio (R2=0.63), carbon content (R2=0.47), and nitrogen content (R2=0.49). Model predictions did not improve when using two cameras spanning 400-1800 nm, suggesting a robust, widely applicable and more 'cost-effective' pipeline requiring only a single VNIR camera. The analysis pipeline and methods can be used in any cropping system with modified species-specific PLSR analysis to offer a high-throughput field phenotyping screening for germplasm with improved photosynthetic performance in field trials.
目前,光合作用的测量采用耗时且/或具有破坏性的方法,这减缓了鉴定具有较高光合能力作物种质的研究和育种工作。我们提出了一种用于量化光合参数和色素含量的田间地块筛选工具,该工具利用从约2米×2米的地块中采集的受阳光照射叶片像素的高光谱反射率,采集时间不到1分钟。在两个生长季节(2017年和2018年),我们使用光合途径发生基因改变的田间种植烟草,建立了八个光合参数和色素性状的预测模型。通过对来自单个可见近红外(VNIR)(400 - 900纳米)高光谱相机的田间地块受阳光照射的营养反射像素进行偏最小二乘回归(PLSR)分析,我们预测了核酮糖-1,5-二磷酸羧化酶的最大羧化速率(Vc,max,R2 = 0.79)、给定条件下的最大电子传递速率(J1800,R2 = 0.59)、最大光饱和光合作用(Pmax,R2 = 0.54)、叶绿素含量(R2 = 0.87)、叶绿素a/b比值(R2 = 0.63)、碳含量(R2 = 0.47)和氮含量(R2 = 0.49)。当使用两台覆盖400 - 1800纳米的相机时,模型预测并没有改善,这表明仅需一台VNIR相机的管道系统稳健、广泛适用且更具“成本效益”。该分析管道系统和方法可用于任何种植系统,并通过修改特定物种的PLSR分析,在田间试验中为具有改良光合性能的种质提供高通量田间表型筛选。