School of Biological Sciences, Washington State University, Pullman, WA, USA.
Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA.
J Exp Bot. 2021 May 28;72(12):4373-4383. doi: 10.1093/jxb/erab118.
Plateauing yield and stressful environmental conditions necessitate selecting crops for superior physiological traits with untapped potential to enhance crop performance. Plant productivity is often limited by carbon fixation rates that could be improved by increasing maximum photosynthetic carboxylation capacity (Vcmax). However, Vcmax measurements using gas exchange and biochemical assays are slow and laborious, prohibiting selection in breeding programs. Rapid hyperspectral reflectance measurements show potential for predicting Vcmax using regression models. While several hyperspectral models have been developed, contributions from different spectral regions to predictions of Vcmax have not been clearly identified or linked to biochemical variation contributing to Vcmax. In this study, hyperspectral reflectance data from 350-2500 nm were used to build partial least squares regression models predicting in vivo and in vitro Vcmax. Wild-type and transgenic tobacco plants with antisense reductions in Rubisco content were used to alter Vcmax independent from chlorophyll, carbon, and nitrogen content. Different spectral regions were used to independently build partial least squares regression models and identify key regions linked to Vcmax and other leaf traits. The greatest Vcmax prediction accuracy used a portion of the shortwave infrared region from 2070 nm to 2470 nm, where the inclusion of fewer spectral regions resulted in more accurate models.
产量停滞和压力环境条件需要选择具有未开发潜力的作物,以提高作物的生理特性。植物生产力通常受到碳固定率的限制,可以通过提高最大光合羧化能力(Vcmax)来提高。然而,使用气体交换和生化分析测量 Vcmax 速度较慢且费力,从而阻止了在育种计划中进行选择。快速高光谱反射率测量显示出使用回归模型预测 Vcmax 的潜力。虽然已经开发了几种高光谱模型,但不同光谱区域对 Vcmax 预测的贡献以及与 Vcmax 相关的生化变化尚未明确确定或联系起来。在这项研究中,使用 350-2500nm 的高光谱反射率数据来构建预测体内和体外 Vcmax 的偏最小二乘回归模型。使用反义降低 Rubisco 含量的野生型和转基因烟草植物被用来改变 Vcmax,而不改变叶绿素、碳和氮含量。使用不同的光谱区域独立构建偏最小二乘回归模型,并确定与 Vcmax 和其他叶片特性相关的关键区域。使用来自 2070nm 到 2470nm 的短波红外区域的一部分可以获得最大的 Vcmax 预测精度,其中包含较少的光谱区域会导致更准确的模型。