Ovsik Martin, Manas Miroslav, Stanek Michal, Dockal Adam, Mizera Ales, Fluxa Petr, Bednarik Martin, Adamek Milan
Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlín, Czech Republic.
Faculty of Applied Informatics, Tomas Bata University in Zlin, CEBIA-Tech, Nad Stranemi 4511, 760 05 Zlín, Czech Republic.
Materials (Basel). 2020 Feb 19;13(4):929. doi: 10.3390/ma13040929.
This study's goal was to describe the influence of a wide range of ionizing beta radiation upon the changes in surface layer mechanical properties and structural modifications of selected types of polymer. Radiation crosslinking is a process whereby the impingement of high-energy electrons adjusts test sample structures, thus enhancing the useful properties of the material, e.g., hardness, wear-resistance, and creep, in order that they may function properly during their technical use. The selected polymers tested were polyolefin polymers like polyethylene (Low-density polyethylene LDPE, High-density polyethylene HDPE). These samples underwent exposure to electron radiation of differing dosages (33, 66, 99, 132, 165, and 198 kGy). After the crosslinking process, the samples underwent testing of the nano-mechanical properties of their surface layers. This was done by means of a state-of-the-art indentation technique, i.e., depth-sensing indentation (DSI), which detects the immediate change in the indentation depth associated with the applied force. Indeed, the results indicated that the optimal radiation dosage increased the mechanical properties by up to 57%; however, the beneficial levels of radiation varied with each material. Furthermore, these modifications faced examination from the structural perspective. For this purpose, a gel test, Raman spectroscopy, and crystalline portion determination by X-ray all confirmed the assumed trends.
本研究的目的是描述各种电离β辐射对选定类型聚合物表面层力学性能变化和结构改性的影响。辐射交联是一个过程,高能电子的撞击会调整测试样品的结构,从而增强材料的有用性能,例如硬度、耐磨性和蠕变性,以便它们在技术使用过程中能够正常发挥作用。所测试的选定聚合物是聚烯烃聚合物,如聚乙烯(低密度聚乙烯LDPE、高密度聚乙烯HDPE)。这些样品接受了不同剂量(33、66、99、132、165和198千戈瑞)的电子辐射。交联过程完成后,对样品表面层的纳米力学性能进行了测试。这是通过一种先进的压痕技术,即深度传感压痕(DSI)来完成的,该技术可检测与所施加力相关的压痕深度的即时变化。事实上,结果表明,最佳辐射剂量可使力学性能提高多达57%;然而,辐射的有益水平因每种材料而异。此外,还从结构角度对这些改性进行了研究。为此,凝胶试验、拉曼光谱和X射线结晶部分测定均证实了假定的趋势。