Lei Fangni, Crow Wade T, Kustas William P, Dong Jianzhi, Yang Yun, Knipper Kyle R, Anderson Martha C, Gao Feng, Notarnicola Claudia, Greifeneder Felix, McKee Lynn M, Alfieri Joseph G, Hain Christopher, Dokoozlian Nick
Hydrology and Remote Sensing Laboratory, USDA Agricultural Research Service, Beltsville, MD 20705, USA.
Geosystems Research Institute, Mississippi State University, Starkville, MS 39762, USA.
Remote Sens Environ. 2020 Mar 15;239. doi: 10.1016/j.rse.2019.111622.
Efficient water use assessment and irrigation management is critical for the sustainability of irrigated agriculture, especially under changing climate conditions. Due to the impracticality of maintaining ground instrumentation over wide geographic areas, remote sensing and numerical model-based fine-scale mapping of soil water conditions have been applied for water resource applications at a range of spatial scales. Here, we present a prototype framework for integrating high-resolution thermal infrared (TIR) and synthetic aperture radar (SAR) remote sensing data into a soil-vegetation-atmosphere-transfer (SVAT) model with the aim of providing improved estimates of surface- and root-zone soil moisture that can support optimized irrigation management strategies. Specifically, remotely-sensed estimates of water stress (from TIR) and surface soil moisture retrievals (from SAR) are assimilated into a 30-m resolution SVAT model over a vineyard site in the Central Valley of California, U.S. The efficacy of our data assimilation algorithm is investigated via both the synthetic and real data experiments. Results demonstrate that a particle filtering approach is superior to an ensemble Kalman filter for handling the nonlinear relationship between model states and observations. In addition, biophysical conditions such as leaf area index are shown to impact the relationship between observations and states and must therefore be represented accurately in the assimilation model. Overall, both surface and root-zone soil moisture predicted via the SVAT model are enhanced through the assimilation of thermal and radar-based retrievals, suggesting the potential for improving irrigation management at the agricultural sub-field scale using a data assimilation strategy.
高效的用水评估和灌溉管理对于灌溉农业的可持续发展至关重要,尤其是在气候变化的条件下。由于在广阔地理区域维护地面仪器不切实际,基于遥感和数值模型的土壤水分状况精细尺度制图已被应用于一系列空间尺度的水资源应用中。在此,我们提出了一个将高分辨率热红外(TIR)和合成孔径雷达(SAR)遥感数据集成到土壤-植被-大气传输(SVAT)模型中的原型框架,旨在提供对表层和根区土壤湿度的改进估计,以支持优化的灌溉管理策略。具体而言,将遥感得到的水分胁迫估计值(来自TIR)和表层土壤湿度反演值(来自SAR)同化到美国加利福尼亚中央谷地一个葡萄园场地的30米分辨率SVAT模型中。通过合成数据和实际数据实验研究了我们的数据同化算法的有效性。结果表明,在处理模型状态与观测值之间的非线性关系时,粒子滤波方法优于集合卡尔曼滤波。此外,叶面积指数等生物物理条件会影响观测值与状态之间的关系,因此必须在同化模型中准确表示。总体而言,通过同化基于热红外和雷达的反演值,SVAT模型预测的表层和根区土壤湿度均得到了改善,这表明使用数据同化策略在农业子田尺度上改善灌溉管理具有潜力。