Suppr超能文献

Effects on respiratory pattern of focal cooling in the medulla of the dog.

作者信息

Adams M, Chonan T, Cherniack N S, von Euler C

机构信息

Department of Surgery, Case Western Reserve University, Cleveland, Ohio 44106.

出版信息

J Appl Physiol (1985). 1988 Nov;65(5):2004-10. doi: 10.1152/jappl.1988.65.5.2004.

Abstract

Studies in cats have shown that, in addition to respiratory neuron groups in the dorsomedial (DRG) and ventrolateral (VRG) medulla, neural structures in the most ventral medullary regions are important for the maintenance of respiratory rhythm. The purpose of this study was to determine whether a similar superficially located ventral region was present in the dog and to assess the role of each of the other regions in the canine medulla important in the control of breathing, in 20 anesthetized, vagotomized, and artificially ventilated dogs, a cryoprobe was used to cool selected regions of the medulla to 15-20 degrees C. Respiratory output was determined from phrenic nerve or diaphragm electrical activity. Cooling in or near the nucleus of the solitary tract altered timing and produced little change in the amplitude or rate of rise of inspiratory activity; lengthening of inspiratory time was the most common timing effect observed. Cooling in ventrolateral regions affected the amplitude and rate of rise of respiratory activity. Depression of neural tidal volume and apnea could be produced by unilateral cooling in two ventrolateral regions: 1) near the nucleus ambiguus and nucleus para-ambiguus and 2) just beneath the ventral medullary surface. These findings indicate that in the dog dorsomedial neural structures influence respiratory timing, whereas more ventral structures are important to respiratory drive.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验