Suppr超能文献

低电位铁氧化还原蛋白与黄素氧还蛋白电子载体之间的进化关系

Evolutionary Relationships Between Low Potential Ferredoxin and Flavodoxin Electron Carriers.

作者信息

Campbell Ian J, Bennett George N, Silberg Jonathan J

机构信息

Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX, United States.

Department of BioSciences, Rice University, Houston, TX, United States.

出版信息

Front Energy Res. 2019;7. doi: 10.3389/fenrg.2019.00079. Epub 2019 Aug 23.

Abstract

Proteins from the ferredoxin (Fd) and flavodoxin (Fld) families function as low potential electrical transfer hubs in cells, at times mediating electron transfer between overlapping sets of oxidoreductases. To better understand protein electron carrier (PEC) use across the domains of life, we evaluated the distribution of genes encoding [4Fe-4S] Fd, [2Fe-2S] Fd, and Fld electron carriers in over 7,000 organisms. Our analysis targeted genes encoding small PEC genes encoding proteins having ≤200 residues. We find that the average number of small PEC genes per Archaea (13), Bacteria (8), and Eukarya (~3) genome varies, with some organisms containing as many as 54 total PEC genes. Organisms fall into three groups, including those lacking genes encoding low potential PECs (3%), specialists with a single PEC gene type (20%), and generalists that utilize multiple PEC types (77%). Mapping PEC gene usage onto an evolutionary tree highlights the prevalence of [4Fe-4S] Fds in ancient organisms that are deeply rooted, the expansion of [2Fe-2S] Fds with the advent of photosynthesis and a concomitant decrease in [4Fe-4S] Fds, and the expansion of Flds in organisms that inhabit low-iron host environments. Surprisingly, [4Fe-4S] Fds present a similar abundance in aerobes as [2Fe-2S] Fds. This bioinformatic study highlights understudied PECs whose structure, stability, and partner specificity should be further characterized.

摘要

铁氧化还原蛋白(Fd)和黄素氧化还原蛋白(Fld)家族的蛋白质在细胞中作为低电位电子传递枢纽发挥作用,有时介导重叠的氧化还原酶组之间的电子转移。为了更好地了解生命各领域中蛋白质电子载体(PEC)的使用情况,我们评估了超过7000种生物中编码[4Fe-4S] Fd、[2Fe-2S] Fd和Fld电子载体的基因分布。我们的分析针对编码小PEC的基因,即编码残基≤200的蛋白质的基因。我们发现,每个古菌(约13个)、细菌(约8个)和真核生物(约3个)基因组中小PEC基因的平均数量各不相同,有些生物总共含有多达54个PEC基因。生物可分为三类,包括那些缺乏编码低电位PEC基因的生物(3%)、具有单一PEC基因类型的特化生物(20%)以及利用多种PEC类型的泛化生物(77%)。将PEC基因的使用情况映射到进化树上,突出了[4Fe-4S] Fd在根基深厚的古老生物中的普遍性、随着光合作用的出现[2Fe-2S] Fd的扩张以及[4Fe-4S] Fd的相应减少,以及Fld在低铁宿主环境中的生物中的扩张。令人惊讶的是,[4Fe-4S] Fd在需氧生物中的丰度与[2Fe-2S] Fd相似。这项生物信息学研究突出了一些研究较少的PEC,其结构、稳定性和伴侣特异性应进一步表征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07ab/7039249/ed38b4072092/nihms-1553086-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验