Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901.
Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854.
Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):1280-1285. doi: 10.1073/pnas.1714225115. Epub 2018 Jan 22.
Oxidoreductases catalyze electron transfer reactions that ultimately provide the energy for life. A limited set of ancestral protein-metal modules are presumably the building blocks that evolved into this diverse protein family. However, the identity of these modules and their path to modern oxidoreductases is unknown. Using a comparative structural analysis approach, we identify a set of fundamental electron transfer modules that have evolved to form the extant oxidoreductases. Using transition metal-containing cofactors as fiducial markers, it is possible to cluster cofactor microenvironments into as few as four major modules: bacterial ferredoxin, cytochrome c, symerythrin, and plastocyanin-type folds. From structural alignments, it is challenging to ascertain whether modules evolved from a single common ancestor (homology) or arose by independent convergence on a limited set of structural forms (analogy). Additional insight into common origins is contained in the spatial adjacency network (SPAN), which is based on proximity of modules in oxidoreductases containing multiple cofactor electron transfer chains. Electron transfer chains within complex modern oxidoreductases likely evolved through repeated duplication and diversification of ancient modular units that arose in the Archean eon.
氧化还原酶催化电子转移反应,为生命提供能量。一组有限的祖先蛋白-金属模块可能是进化为这种多样化蛋白家族的基石。然而,这些模块的身份及其通往现代氧化还原酶的途径尚不清楚。我们使用比较结构分析方法,确定了一组基本的电子转移模块,这些模块进化形成了现存的氧化还原酶。使用含过渡金属的辅助因子作为基准标记,可以将辅助因子微环境聚类为多达四个主要模块:细菌铁氧还蛋白、细胞色素 c、symerythrin 和质体蓝素型折叠。从结构比对来看,很难确定模块是来自单一共同祖先(同源性)还是通过对有限数量的结构形式的独立趋同(类似性)而产生的。关于共同起源的更多信息包含在基于含有多个辅助因子电子转移链的氧化还原酶中模块空间邻近网络(SPAN)中。复杂的现代氧化还原酶中的电子转移链可能是通过重复复制和多样化古老模块单元而进化而来的,这些古老模块单元起源于太古代。