Suppr超能文献

用于高加速动态成像的低秩和自适应稀疏信号(LASSI)模型

Low-Rank and Adaptive Sparse Signal (LASSI) Models for Highly Accelerated Dynamic Imaging.

作者信息

Ravishankar Saiprasad, Moore Brian E, Nadakuditi Raj Rao, Fessler Jeffrey A

出版信息

IEEE Trans Med Imaging. 2017 May;36(5):1116-1128. doi: 10.1109/TMI.2017.2650960. Epub 2017 Jan 10.

Abstract

Sparsity-based approaches have been popular in many applications in image processing and imaging. Compressed sensing exploits the sparsity of images in a transform domain or dictionary to improve image recovery fromundersampledmeasurements. In the context of inverse problems in dynamic imaging, recent research has demonstrated the promise of sparsity and low-rank techniques. For example, the patches of the underlying data are modeled as sparse in an adaptive dictionary domain, and the resulting image and dictionary estimation from undersampled measurements is called dictionary-blind compressed sensing, or the dynamic image sequence is modeled as a sum of low-rank and sparse (in some transform domain) components (L+S model) that are estimated from limited measurements. In this work, we investigate a data-adaptive extension of the L+S model, dubbed LASSI, where the temporal image sequence is decomposed into a low-rank component and a component whose spatiotemporal (3D) patches are sparse in some adaptive dictionary domain. We investigate various formulations and efficient methods for jointly estimating the underlying dynamic signal components and the spatiotemporal dictionary from limited measurements. We also obtain efficient sparsity penalized dictionary-blind compressed sensing methods as special cases of our LASSI approaches. Our numerical experiments demonstrate the promising performance of LASSI schemes for dynamicmagnetic resonance image reconstruction from limited k-t space data compared to recent methods such as k-t SLR and L+S, and compared to the proposed dictionary-blind compressed sensing method.

摘要

基于稀疏性的方法在图像处理和成像的许多应用中都很流行。压缩感知利用图像在变换域或字典中的稀疏性,以从欠采样测量中改善图像恢复。在动态成像的逆问题背景下,最近的研究已经证明了稀疏性和低秩技术的前景。例如,基础数据的块在自适应字典域中被建模为稀疏的,并且从欠采样测量中得到的图像和字典估计被称为字典盲压缩感知,或者动态图像序列被建模为从有限测量中估计的低秩和稀疏(在某些变换域中)分量的总和(L+S模型)。在这项工作中,我们研究了L+S模型的数据自适应扩展,称为LASSI,其中时间图像序列被分解为一个低秩分量和一个其时空(3D)块在某些自适应字典域中稀疏的分量。我们研究了从有限测量中联合估计基础动态信号分量和时空字典的各种公式和有效方法。我们还获得了有效的稀疏惩罚字典盲压缩感知方法,作为我们LASSI方法的特殊情况。我们的数值实验表明,与最近的方法如k-t SLR和L+S相比,以及与所提出的字典盲压缩感知方法相比,LASSI方案在从有限的k-t空间数据进行动态磁共振图像重建方面具有很有前景的性能。

相似文献

1
Low-Rank and Adaptive Sparse Signal (LASSI) Models for Highly Accelerated Dynamic Imaging.
IEEE Trans Med Imaging. 2017 May;36(5):1116-1128. doi: 10.1109/TMI.2017.2650960. Epub 2017 Jan 10.
2
Blind compressive sensing dynamic MRI.
IEEE Trans Med Imaging. 2013 Jun;32(6):1132-45. doi: 10.1109/TMI.2013.2255133. Epub 2013 Mar 27.
3
Online Adaptive Image Reconstruction (OnAIR) Using Dictionary Models.
IEEE Trans Comput Imaging. 2020;6:153-166. doi: 10.1109/tci.2019.2931092.
4
Efficient Sum of Outer Products Dictionary Learning (SOUP-DIL) and Its Application to Inverse Problems.
IEEE Trans Comput Imaging. 2017 Dec;3(4):694-709. doi: 10.1109/TCI.2017.2697206. Epub 2017 Apr 21.
8
Compressive sensing image recovery using dictionary learning and shape-adaptive DCT thresholding.
Magn Reson Imaging. 2019 Jan;55:60-71. doi: 10.1016/j.mri.2018.09.014. Epub 2018 Sep 19.
9
Sparsity-promoting orthogonal dictionary updating for image reconstruction from highly undersampled magnetic resonance data.
Phys Med Biol. 2015 Jul 21;60(14):5359-80. doi: 10.1088/0031-9155/60/14/5359. Epub 2015 Jun 25.
10
MR image reconstruction from highly undersampled k-space data by dictionary learning.
IEEE Trans Med Imaging. 2011 May;30(5):1028-41. doi: 10.1109/TMI.2010.2090538. Epub 2010 Nov 1.

引用本文的文献

1
ACCELERATING QUANTITATIVE MRI USING SUBSPACE MULTISCALE ENERGY MODEL (SS-MUSE).
Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10980741. Epub 2025 May 12.
2
Accelerating 3D radial MPnRAGE using a self-supervised deep factor model.
Magn Reson Med. 2025 Sep;94(3):1191-1201. doi: 10.1002/mrm.30549. Epub 2025 Jun 2.
4
Accelerated dynamic magnetic resonance imaging from Spatial-Subspace Reconstructions (SPARS).
PLoS One. 2025 Jan 31;20(1):e0317271. doi: 10.1371/journal.pone.0317271. eCollection 2025.
5
Plug-and-Play Methods for Magnetic Resonance Imaging: Using Denoisers for Image Recovery.
IEEE Signal Process Mag. 2020 Jan;37(1):105-116. doi: 10.1109/msp.2019.2949470. Epub 2020 Jan 17.
6
High-Resolution Oscillating Steady-State fMRI Using Patch-Tensor Low-Rank Reconstruction.
IEEE Trans Med Imaging. 2020 Dec;39(12):4357-4368. doi: 10.1109/TMI.2020.3017450. Epub 2020 Nov 30.
7
Online Adaptive Image Reconstruction (OnAIR) Using Dictionary Models.
IEEE Trans Comput Imaging. 2020;6:153-166. doi: 10.1109/tci.2019.2931092.
8
Image Reconstruction: From Sparsity to Data-adaptive Methods and Machine Learning.
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):86-109. doi: 10.1109/JPROC.2019.2936204. Epub 2019 Sep 19.
9
Accurate vessel extraction via tensor completion of background layer in X-ray coronary angiograms.
Pattern Recognit. 2019 Mar;87:38-54. doi: 10.1016/j.patcog.2018.09.015. Epub 2018 Oct 9.
10
Clinical Potential of a New Approach to MRI Acceleration.
Sci Rep. 2019 Feb 13;9(1):1912. doi: 10.1038/s41598-018-36802-5.

本文引用的文献

1
Efficient Sum of Outer Products Dictionary Learning (SOUP-DIL) and Its Application to Inverse Problems.
IEEE Trans Comput Imaging. 2017 Dec;3(4):694-709. doi: 10.1109/TCI.2017.2697206. Epub 2017 Apr 21.
2
Bayesian nonparametric dictionary learning for compressed sensing MRI.
IEEE Trans Image Process. 2014 Dec;23(12):5007-19. doi: 10.1109/TIP.2014.2360122. Epub 2014 Sep 24.
3
Dynamic MR image reconstruction-separation from undersampled (k,t)-space via low-rank plus sparse prior.
IEEE Trans Med Imaging. 2014 Aug;33(8):1689-701. doi: 10.1109/TMI.2014.2321190. Epub 2014 Apr 30.
4
5
Dictionary learning and time sparsity for dynamic MR data reconstruction.
IEEE Trans Med Imaging. 2014 Apr;33(4):979-94. doi: 10.1109/TMI.2014.2301271.
6
BLIND COMPRESSED SENSING WITH SPARSE DICTIONARIES FOR ACCELERATED DYNAMIC MRI.
Proc IEEE Int Symp Biomed Imaging. 2013:5-8. doi: 10.1109/ISBI.2013.6556398.
7
Compressed sensing dynamic cardiac cine MRI using learned spatiotemporal dictionary.
IEEE Trans Biomed Eng. 2014 Apr;61(4):1109-20. doi: 10.1109/TBME.2013.2294939.
8
ADAPTIVE REAL-TIME CARDIAC MRI USING : VALIDATION BY THE PHYSIOLOGICALLY IMPROVED PHANTOM.
Proc IEEE Int Symp Biomed Imaging. 2007. doi: 10.1109/ISBI.2007.357028.
9
Alternatively Constrained Dictionary Learning For Image Superresolution.
IEEE Trans Cybern. 2014 Mar;44(3):366-77. doi: 10.1109/TCYB.2013.2256347. Epub 2013 May 2.
10
Blind compressive sensing dynamic MRI.
IEEE Trans Med Imaging. 2013 Jun;32(6):1132-45. doi: 10.1109/TMI.2013.2255133. Epub 2013 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验