Suppr超能文献

用于高加速动态成像的低秩和自适应稀疏信号(LASSI)模型

Low-Rank and Adaptive Sparse Signal (LASSI) Models for Highly Accelerated Dynamic Imaging.

作者信息

Ravishankar Saiprasad, Moore Brian E, Nadakuditi Raj Rao, Fessler Jeffrey A

出版信息

IEEE Trans Med Imaging. 2017 May;36(5):1116-1128. doi: 10.1109/TMI.2017.2650960. Epub 2017 Jan 10.

Abstract

Sparsity-based approaches have been popular in many applications in image processing and imaging. Compressed sensing exploits the sparsity of images in a transform domain or dictionary to improve image recovery fromundersampledmeasurements. In the context of inverse problems in dynamic imaging, recent research has demonstrated the promise of sparsity and low-rank techniques. For example, the patches of the underlying data are modeled as sparse in an adaptive dictionary domain, and the resulting image and dictionary estimation from undersampled measurements is called dictionary-blind compressed sensing, or the dynamic image sequence is modeled as a sum of low-rank and sparse (in some transform domain) components (L+S model) that are estimated from limited measurements. In this work, we investigate a data-adaptive extension of the L+S model, dubbed LASSI, where the temporal image sequence is decomposed into a low-rank component and a component whose spatiotemporal (3D) patches are sparse in some adaptive dictionary domain. We investigate various formulations and efficient methods for jointly estimating the underlying dynamic signal components and the spatiotemporal dictionary from limited measurements. We also obtain efficient sparsity penalized dictionary-blind compressed sensing methods as special cases of our LASSI approaches. Our numerical experiments demonstrate the promising performance of LASSI schemes for dynamicmagnetic resonance image reconstruction from limited k-t space data compared to recent methods such as k-t SLR and L+S, and compared to the proposed dictionary-blind compressed sensing method.

摘要

基于稀疏性的方法在图像处理和成像的许多应用中都很流行。压缩感知利用图像在变换域或字典中的稀疏性,以从欠采样测量中改善图像恢复。在动态成像的逆问题背景下,最近的研究已经证明了稀疏性和低秩技术的前景。例如,基础数据的块在自适应字典域中被建模为稀疏的,并且从欠采样测量中得到的图像和字典估计被称为字典盲压缩感知,或者动态图像序列被建模为从有限测量中估计的低秩和稀疏(在某些变换域中)分量的总和(L+S模型)。在这项工作中,我们研究了L+S模型的数据自适应扩展,称为LASSI,其中时间图像序列被分解为一个低秩分量和一个其时空(3D)块在某些自适应字典域中稀疏的分量。我们研究了从有限测量中联合估计基础动态信号分量和时空字典的各种公式和有效方法。我们还获得了有效的稀疏惩罚字典盲压缩感知方法,作为我们LASSI方法的特殊情况。我们的数值实验表明,与最近的方法如k-t SLR和L+S相比,以及与所提出的字典盲压缩感知方法相比,LASSI方案在从有限的k-t空间数据进行动态磁共振图像重建方面具有很有前景的性能。

相似文献

2
Blind compressive sensing dynamic MRI.盲压缩感知动态 MRI。
IEEE Trans Med Imaging. 2013 Jun;32(6):1132-45. doi: 10.1109/TMI.2013.2255133. Epub 2013 Mar 27.

引用本文的文献

1
ACCELERATING QUANTITATIVE MRI USING SUBSPACE MULTISCALE ENERGY MODEL (SS-MUSE).使用子空间多尺度能量模型(SS-MUSE)加速定量磁共振成像
Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10980741. Epub 2025 May 12.
8
Image Reconstruction: From Sparsity to Data-adaptive Methods and Machine Learning.图像重建:从稀疏性到数据自适应方法与机器学习
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):86-109. doi: 10.1109/JPROC.2019.2936204. Epub 2019 Sep 19.

本文引用的文献

2
Bayesian nonparametric dictionary learning for compressed sensing MRI.贝叶斯非参数字典学习在压缩感知 MRI 中的应用。
IEEE Trans Image Process. 2014 Dec;23(12):5007-19. doi: 10.1109/TIP.2014.2360122. Epub 2014 Sep 24.
9
Alternatively Constrained Dictionary Learning For Image Superresolution.替代约束字典学习的图像超分辨率方法。
IEEE Trans Cybern. 2014 Mar;44(3):366-77. doi: 10.1109/TCYB.2013.2256347. Epub 2013 May 2.
10
Blind compressive sensing dynamic MRI.盲压缩感知动态 MRI。
IEEE Trans Med Imaging. 2013 Jun;32(6):1132-45. doi: 10.1109/TMI.2013.2255133. Epub 2013 Mar 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验