Suppr超能文献

A muscarinic receptor subtype modulates vagally stimulated bronchial contraction.

作者信息

Bloom J W, Baumgartener-Folkerts C, Palmer J D, Yamamura H I, Halonen M

机构信息

Division of Respiratory Sciences (Westend Laboratories), University of Arizona College of Medicine, Tucson 85724.

出版信息

J Appl Physiol (1985). 1988 Nov;65(5):2144-50. doi: 10.1152/jappl.1988.65.5.2144.

Abstract

An in vitro preparation was developed to study vagus nerve-stimulated (preganglionic) and field-stimulated (post-ganglionic) contraction of the rabbit main stem bronchus and to compare the inhibitory effects of muscarinic antagonists on that contraction. The maximal contractile responses (20 V, 0.5 ms, 64 Hz) for either field or vagal stimulation were completely abolished by atropine (60 nM). Hexamethonium (0.1 mM) abolished the response to vagal stimulation but did not affect the field-stimulated response. To compare the effectiveness of atropine and pirenzepine as antagonists at the nerve-smooth muscle junction, inhibition studies of field-stimulated contractions were performed. Pirenzepine was 102- to 178-fold less potent than atropine when compared at the inhibitory concentration of antagonist that produced 25, 50, and 75% inhibition (IC25, IC50, and IC75, respectively), indicating that the muscarinic receptor at the nerve-smooth muscle junction is a muscarinic receptor with low affinity for pirenzepine (M2 subtype). Atropine had similar inhibitory effects on vagal- and field-stimulated contractions. In contrast, pirenzepine was more potent in inhibiting vagally stimulated contraction than field-stimulated contraction, especially at the IC25 where pirenzepine was only 8- to 22-fold less potent than atropine in inhibiting vagally stimulated contraction. These data suggest that an M1 subtype of muscarinic receptor modulates excitatory neurotransmission through bronchial parasympathetic ganglia.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验