Department of Biology, Whitman College, Walla Walla, Washington.
J Exp Zool A Ecol Integr Physiol. 2020 Jul;333(6):398-420. doi: 10.1002/jez.2354. Epub 2020 Feb 24.
Hydrostatic pressure (HP), increasing by 1 atm per 10 m in the ocean, perturbs many cellular processes, for example, by rigidifying membranes and disturbing protein folding and ligand binding. Membranes can be fluidized to work under high HP by increasing unsaturated fatty acids, for example, docosahexaenoic acid. Over generations, some deep-sea proteins have evolved intrinsic resistance to HP, but often incompletely. These may be protected from HP with piezolytes, small organic molecules with pressure-counteracting properties. The key example is the osmolyte trimethylamine N-oxide (TMAO), which marine fishes and crustaceans accumulates linearly with depth. TMAO can effectively counteract many inhibitory effects of HP on numerous proteins. For short-term HP stress, cellular stress (transient) and homeostasis (persistent) responses (CSRs, CHRs) remain poorly characterized, but across different taxa of shallow and terrestrial organisms, they include common CSR/CHR mechanisms known for other stressors-heat shock proteins (HSPs), boosted energy metabolism, antioxidants, cellular repair systems. For vertically migrating marine animals, HP stress responses are even more poorly characterized. Some species (e.g., Anguilla silver eel, king crab Lithodes maja, snubnosed eel Simenchelys parasiticus) cope with HP changes in their habitat range by intrinsic adaptations, lipid desaturase activation, and metabolic adjustments, but perhaps not common CSR mechanisms. Such species may have constitutive stress proteins and/or are able to adjust membrane saturation and/or TMAO rapidly with depth. For permanent deep-sea species, CSR/CHR mechanisms have not been directly tested, but evidence in Mariana Trench amphipods and snailfish suggest that HSP and desaturase genes, and possibly piezolyte synthesis, have undergone habitat-related selection.
静水压力(HP)在海洋中每增加 10 米就会增加 1 个大气压,它会扰乱许多细胞过程,例如,通过使膜变硬和干扰蛋白质折叠和配体结合。通过增加不饱和脂肪酸,例如二十二碳六烯酸(docosahexaenoic acid),可以使膜流化以在高 HP 下工作。经过几代人的发展,一些深海蛋白质已经进化出对 HP 的内在抗性,但通常并不完全。这些蛋白质可能会受到 Piezolytes 的保护,Piezolytes 是具有抗压特性的小分子有机化合物。关键的例子是渗透调节剂三甲胺 N-氧化物(TMAO),海洋鱼类和甲壳类动物会随着深度的增加而线性积累 TMAO。TMAO 可以有效地抵消 HP 对许多蛋白质的许多抑制作用。对于短期 HP 应激,细胞应激(瞬时)和体内平衡(持续)反应(CSRs、CHRs)仍未得到很好的描述,但在浅海和陆地生物的不同分类群中,它们包括已知的其他应激源的常见 CSR/CHR 机制——热休克蛋白(HSPs)、增强的能量代谢、抗氧化剂、细胞修复系统。对于垂直迁移的海洋动物,HP 应激反应甚至更不为人知。一些物种(例如,银鳗、帝王蟹、短须拟鲿)通过内在适应、脂解酶激活和代谢调整来应对栖息地范围内的 HP 变化,但可能没有常见的 CSR 机制。这些物种可能具有组成性应激蛋白,或者能够随着深度快速调整膜饱和度和/或 TMAO。对于永久性深海物种,CSR/CHR 机制尚未直接测试,但马里亚纳海沟的片脚类动物和鳚鱼的证据表明,HSP 和去饱和酶基因,以及可能的 Piezolytes 合成,已经经历了与栖息地相关的选择。