Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China; State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographic Information Resource Development and Application, Nanjing, Jiangsu 210023, China; Department of Geography and Regional Research, University of Vienna, Vienna 1010, Austria.
Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China; State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographic Information Resource Development and Application, Nanjing, Jiangsu 210023, China.
Sci Total Environ. 2020 May 20;718:137231. doi: 10.1016/j.scitotenv.2020.137231. Epub 2020 Feb 8.
The major target of this study is to design two novel hybrid integration artificial intelligent models, which are denoted as LADT-Bagging and FPA-Bagging, for modeling landslide susceptibility in the Youfanggou district (China). First of all, we prepared a geospatial database in the study area, including 79 landslide points that were divided into a training and validating dataset and 14 landslide conditioning factors. Second, the Support Vector Machines classifier (SVMC) approach was adapted to analyze the predictive capability of the landslide predisposing factors in each method. Then, a multicollinearity analysis using TOL and VIF parameters and Pearson's correlation coefficient methods were applied to verify the multicollinearity and correlation between these factors. Third, the LADT-Bagging and FPA-Bagging models were built by the integration of the LogitBoost alternating decision trees (LADT) with the Bagging ensemble and Forest by Penalizing Attributes (FPA) with the Bagging ensemble, respectively. Besides, heuristic tests were also applied to identify the appropriate values of each model's parameters in order to obtain the best programmer. Finally, for the training dataset, the results reveal that the LADT-Bagging model acquire the largest AUC value (0.980), smallest standard error (SE) (0.0134), narrowest 95% confidence interval (CI) (0.920-0.999), highest accuracy value (AV) (91.03%), highest specificity (94.44%), highest sensitivity (88.10%), highest F-measure (0.9115), lowest MAE (0.2016), lowest RMSE (0.2653), and highest Kappa (0.8205). About the result of validating dataset, it reveal that the LADT-Bagging model acquire the largest AUC value (0.781), the smallest SE (0.0539), the narrowest 95% CI (0.673-0.867), highest AV (71.19%), highest specificity (74.29%), highest sensitivity (69.77%), highest F-measure (0.7195), lowest MAE (0.3509), lowest RMSE (0.4335), and highest Kappa (0.4359). The results indicate that the LADT-Bagging model outperforms the FPA-Bagging, LADT and FPA models. Furthermore, the results of a Wilcoxon signed-rank test demonstrate that LADT-Bagging is significantly statistically different from other models. Therefore, in this study, the proposed new models are useful tools for land use planners or governments in high landslide risk areas.
本研究的主要目标是设计两种新的混合集成人工智能模型,分别表示为 LADT-Bagging 和 FPA-Bagging,用于模拟 Youfanggou 地区(中国)的滑坡敏感性。首先,我们在研究区域准备了一个地理空间数据库,其中包括 79 个滑坡点,这些点分为训练和验证数据集以及 14 个滑坡条件因素。其次,采用支持向量机分类器(SVMC)方法分析了每种方法中滑坡诱发因素的预测能力。然后,使用 TOL 和 VIF 参数以及 Pearson 相关系数方法进行多共线性分析,以验证这些因素之间的多共线性和相关性。第三,通过将 LogitBoost 交替决策树(LADT)与 Bagging 集成和 Forest 惩罚属性(FPA)与 Bagging 集成分别集成,构建了 LADT-Bagging 和 FPA-Bagging 模型。此外,还应用启发式测试来确定每个模型参数的适当值,以获得最佳编程器。最后,对于训练数据集,结果表明 LADT-Bagging 模型获得了最大的 AUC 值(0.980)、最小的标准误差(SE)(0.0134)、最窄的 95%置信区间(CI)(0.920-0.999)、最高的准确性值(AV)(91.03%)、最高的特异性(94.44%)、最高的敏感性(88.10%)、最高的 F 度量(0.9115)、最低的 MAE(0.2016)、最低的 RMSE(0.2653)和最高的 Kappa(0.8205)。关于验证数据集的结果,它表明 LADT-Bagging 模型获得了最大的 AUC 值(0.781)、最小的 SE(0.0539)、最窄的 95%CI(0.673-0.867)、最高的 AV(71.19%)、最高的特异性(74.29%)、最高的敏感性(69.77%)、最高的 F 度量(0.7195)、最低的 MAE(0.3509)、最低的 RMSE(0.4335)和最高的 Kappa(0.4359)。结果表明,LADT-Bagging 模型优于 FPA-Bagging、LADT 和 FPA 模型。此外,Wilcoxon 符号秩检验的结果表明,LADT-Bagging 与其他模型在统计学上有显著差异。因此,在本研究中,所提出的新模型是高滑坡风险地区土地利用规划者或政府的有用工具。