Suppr超能文献

通过集成递归特征消除和元学习框架改进滑坡易发性预测

Improving landslide susceptibility prediction through ensemble recursive feature elimination and meta-learning framework.

作者信息

Halder Krishnagopal, Srivastava Amit Kumar, Ghosh Anitabha, Das Subhabrata, Banerjee Santanu, Pal Subodh Chandra, Chatterjee Uday, Bisai Dipak, Ewert Frank, Gaiser Thomas

机构信息

Department of Remote Sensing and GIS, Vidyasagar University, Vidyasagar University Rd, Midnapore, 721102, West Bengal, India.

Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Strasse 84, 15374, Müncheberg, Germany.

出版信息

Sci Rep. 2025 Feb 12;15(1):5170. doi: 10.1038/s41598-025-87587-3.

Abstract

Landslides pose significant threats to ecosystems, lives, and economies, particularly in the geologically fragile Sub-Himalayan region of West Bengal, India. This study enhances landslide susceptibility prediction by developing an ensemble framework integrating Recursive Feature Elimination (RFE) with meta-learning techniques. Seven advanced machine learning models- Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Extremely Randomized Trees (ET), Gradient Boosting (GB), Extreme Gradient Boosting (XGBoost), and a Meta Classifier (MC) were applied using Remote Sensing and GIS tools to identify key landslide-conditioning factors and classify susceptibility zones. Model performance was assessed through metrics such as accuracy, precision, recall, F1 score, and AUC of the ROC curve. Among the models, the Meta Classifier (MC) achieved the highest accuracy (0.956) and AUC (0.987), demonstrating superior predictive ability. Gradient Boosting (GB), XGBoost, and RF also performed well, with accuracies of 0.943 and AUC values of 0.987 (GB and XGBoost) and 0.983 (RF). Extremely Randomized Trees (ET) exhibited the highest accuracy (0.946) among individual models and an AUC of 0.985. SVM and LR, while slightly less accurate (0.941 and 0.860, respectively), provided valuable insights, with SVM achieving an AUC of 0.972 and LR achieving 0.935. The models effectively delineated landslide susceptibility into five zones (very low, low, moderate, high, and very high), with high and very high susceptibility zones concentrated in Darjeeling and Kalimpong subdivisions. These zones are influenced by intense rainfall, unstable geological structures, and anthropogenic activities like deforestation and urbanization. Notably, ET, RF, GB, and XGBoost demonstrated efficiency in feature selection, requiring fewer input variables while maintaining high performance. This study establishes a benchmark for landslide susceptibility mapping, providing a scalable and adaptable framework for geospatial hazard prediction. The findings hold significant implications for land-use planning, disaster management, and environmental conservation in vulnerable regions worldwide.

摘要

山体滑坡对生态系统、生命和经济构成重大威胁,尤其是在印度西孟加拉邦地质脆弱的喜马拉雅次区域。本研究通过开发一个将递归特征消除(RFE)与元学习技术相结合的集成框架,提高了山体滑坡易发性预测。使用遥感和地理信息系统工具应用了七种先进的机器学习模型——逻辑回归(LR)、支持向量机(SVM)、随机森林(RF)、极端随机树(ET)、梯度提升(GB)、极端梯度提升(XGBoost)和一个元分类器(MC),以识别关键的山体滑坡条件因素并对易发性区域进行分类。通过诸如准确率、精确率、召回率、F1分数和ROC曲线的AUC等指标评估模型性能。在这些模型中,元分类器(MC)实现了最高准确率(0.956)和AUC(0.987),显示出卓越的预测能力。梯度提升(GB)、XGBoost和随机森林(RF)也表现良好,准确率分别为0.943,GB和XGBoost的AUC值为0.987,RF的AUC值为0.983。极端随机树(ET)在单个模型中表现出最高准确率(0.946),AUC为0.985。支持向量机(SVM)和逻辑回归(LR)虽然准确率略低(分别为0.941和0.860),但提供了有价值的见解,SVM的AUC为0.972,LR的AUC为0.935。这些模型有效地将山体滑坡易发性划分为五个区域(极低、低、中等、高和极高),高易发性和极高易发性区域集中在大吉岭和卡尔西蓬分区。这些区域受到强降雨、不稳定的地质结构以及森林砍伐和城市化等人为活动的影响。值得注意的是,ET、RF、GB和XGBoost在特征选择方面表现出高效性,在保持高性能的同时需要更少的输入变量。本研究为山体滑坡易发性测绘建立了一个基准,为地理空间灾害预测提供了一个可扩展且适应性强的框架。研究结果对全球脆弱地区的土地利用规划、灾害管理和环境保护具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db09/11822027/8e1243e0c9d1/41598_2025_87587_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验