Key Lab of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, Xi'an, Shaanxi 710071, People's Republic of China.
Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.
Phys Med Biol. 2020 Dec 11;65(24):245034. doi: 10.1088/1361-6560/ab79c3.
Accurate segmentation of organs at risk (OARs) is necessary for adaptive head and neck (H&N) cancer treatment planning, but manual delineation is tedious, slow, and inconsistent. A self-channel-and-spatial-attention neural network (SCSA-Net) is developed for H&N OAR segmentation on CT images. To simultaneously ease the training and improve the segmentation performance, the proposed SCSA-Net utilizes the self-attention ability of the network. Spatial and channel-wise attention learning mechanisms are both employed to adaptively force the network to emphasize the meaningful features and weaken the irrelevant features simultaneously. The proposed network was first evaluated on a public dataset, which includes 48 patients, then on a separate serial CT dataset, which contains ten patients who received weekly diagnostic fan-beam CT scans. On the second dataset, the accuracy of using SCSA-Net to track the parotid and submandibular gland volume changes during radiotherapy treatment was quantified. The Dice similarity coefficient (DSC), positive predictive value (PPV), sensitivity (SEN), average surface distance (ASD), and 95% maximum surface distance (95SD) were calculated on the brainstem, optic chiasm, optic nerves, mandible, parotid glands, and submandibular glands to evaluate the proposed SCSA-Net. The proposed SCSA-Net consistently outperforms the state-of-the-art methods on the public dataset. Specifically, compared with Res-Net and SE-Net, which is constructed from squeeze-and-excitation block equipped residual blocks, the DSC of the optic nerves and submandibular glands is improved by 0.06, 0.03 and 0.05, 0.04 by the SCSA-Net. Moreover, the proposed method achieves statistically significant improvements in terms of DSC on all and eight of nine OARs over Res-Net and SE-Net, respectively. The trained network was able to achieve good segmentation results on the serial dataset, but the results were further improved after fine-tuning of the model using the simulation CT images. For the parotids and submandibular glands, the volume changes of individual patients are highly consistent between the automated and manual segmentation (Pearson's correlation 0.97-0.99). The proposed SCSA-Net is computationally efficient to perform segmentation (sim 2 s/CT).
准确地分割危及器官 (OARs) 是自适应头颈部 (H&N) 癌症治疗计划所必需的,但手动勾画既繁琐、缓慢又不一致。我们开发了一种用于 CT 图像上 H&N OAR 分割的自通道和空间注意力神经网络 (SCSA-Net)。为了同时减轻训练负担并提高分割性能,所提出的 SCSA-Net 利用了网络的自注意力能力。同时采用空间和通道注意学习机制,使网络自适应地强调有意义的特征,同时减弱无关特征。该网络首先在一个包含 48 名患者的公共数据集上进行评估,然后在一个包含 10 名每周接受诊断扇形束 CT 扫描的患者的独立连续 CT 数据集上进行评估。在第二个数据集上,量化了使用 SCSA-Net 跟踪放疗过程中腮腺和颌下腺体积变化的准确性。采用脑干、视交叉、视神经、下颌骨、腮腺和颌下腺的 Dice 相似系数 (DSC)、阳性预测值 (PPV)、灵敏度 (SEN)、平均表面距离 (ASD) 和 95%最大表面距离 (95SD) 评估所提出的 SCSA-Net。在所提出的 SCSA-Net 上,该网络在公共数据集上的表现始终优于最先进的方法。具体而言,与 Res-Net 和 SE-Net(分别由挤压激励块构建的残差块)相比,视神经和颌下腺的 DSC 分别提高了 0.06、0.03 和 0.05、0.04,SCSA-Net 分别提高了 0.06、0.03 和 0.05、0.04。此外,在所提出的方法中,在所有九个 OAR 中的八个 OAR 上,DSC 都分别相对于 Res-Net 和 SE-Net 有统计学意义上的提高。训练有素的网络能够在连续数据集上实现良好的分割结果,但在使用模拟 CT 图像对模型进行微调后,结果得到了进一步提高。对于腮腺和颌下腺,个体患者的体积变化在自动和手动分割之间高度一致(Pearson 相关系数为 0.97-0.99)。所提出的 SCSA-Net 在执行分割时计算效率高(模拟 2 秒/CT)。