State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300132, China.
Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300132, China.
Sensors (Basel). 2020 Feb 21;20(4):1203. doi: 10.3390/s20041203.
The performance of the event-related potential (ERP)-based brain-computer interface (BCI) declines when applying it into the real environment, which limits the generality of the BCI. The sound is a common noise in daily life, and whether it has influence on this decline is unknown. This study designs a visual-auditory BCI task that requires the subject to focus on the visual interface to output commands and simultaneously count number according to an auditory story. The story is played at three speeds to cause different workloads. Data collected under the same or different workloads are used to train and test classifiers. The results show that when the speed of playing the story increases, the amplitudes of P300 and N200 potentials decrease by 0.86 μV ( = 0.0239) and 0.69 μV ( = 0.0158) in occipital-parietal area, leading to a 5.95% decline ( = 0.0101) of accuracy and 9.53 bits/min decline ( = 0.0416) of information transfer rate. The classifier that is trained by the high workload data achieves higher accuracy than the one trained by the low workload if using the high workload data to test the performance. The result indicates that the sound could affect the visual ERP-BCI by increasing the workload. The large similarity of the training data and testing data is as important as the amplitudes of the ERP on obtaining high performance, which gives us an insight on how make to the ERP-BCI generalized.
事件相关电位(ERP)脑机接口(BCI)在实际环境中的性能下降,限制了 BCI 的通用性。声音是日常生活中的常见噪声,它是否对这种下降有影响尚不清楚。本研究设计了一种视觉-听觉 BCI 任务,要求受试者专注于视觉界面以输出命令,并同时根据听觉故事进行计数。故事以三种速度播放,以产生不同的工作量。使用相同或不同工作量下采集的数据来训练和测试分类器。结果表明,当播放故事的速度增加时,枕顶区域的 P300 和 N200 电位幅度分别降低 0.86 μV(=0.0239)和 0.69 μV(=0.0158),导致准确率下降 5.95%(=0.0101),信息传输率下降 9.53 比特/分钟(=0.0416)。如果使用高工作量数据测试性能,那么使用高工作量数据训练的分类器比使用低工作量数据训练的分类器具有更高的准确性。结果表明,声音可以通过增加工作量来影响视觉 ERP-BCI。获得高性能的重要因素不仅包括 ERP 的幅度,还包括训练数据和测试数据的相似性,这为我们如何使 ERP-BCI 通用化提供了一些见解。