Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
Therapeutic & Biotechnology Division, Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
Environ Microbiol. 2020 Jul;22(7):2596-2612. doi: 10.1111/1462-2920.14960. Epub 2020 Mar 5.
Fungal sexual reproduction requires complex cellular differentiation processes of hyphal cells. The plant pathogenic fungus Fusarium graminearum produces fruiting bodies called perithecia via sexual reproduction, and perithecia forcibly discharge ascospores into the air for disease initiation and propagation. Lipid metabolism and accumulation are closely related to perithecium formation, yet the molecular mechanisms that regulate these processes are largely unknown. Here, we report that a novel fungal specific bZIP transcription factor, F. graminearum perithecium overproducing 1 (Fpo1), plays a role as a global transcriptional repressor during perithecium production and maturation in F. graminearum. Deletion of FPO1 resulted in reduced vegetative growth, asexual sporulation and virulence and overproduced perithecium, which reached maturity earlier, compared with the wild type. Intriguingly, the hyphae of the fpo1 mutant accumulated excess lipids during perithecium production. Using a combination of molecular biological, transcriptomic and biochemical approaches, we demonstrate that repression of FPO1 after sexual induction leads to reprogramming of carbon metabolism, particularly fatty acid production, which affects sexual reproduction of this fungus. This is the first report of a perithecium-overproducing F. graminearum mutant, and the findings provide comprehensive insight into the role of modulation of carbon metabolism in the sexual reproduction of fungi.
真菌的有性生殖需要菌丝细胞的复杂细胞分化过程。植物病原真菌禾谷镰刀菌通过有性生殖产生称为子囊壳的子实体,子囊壳强行将子囊孢子排放到空气中,以引发和传播疾病。脂质代谢和积累与子囊壳的形成密切相关,但调节这些过程的分子机制在很大程度上尚不清楚。在这里,我们报告了一种新型的真菌特异性 bZIP 转录因子,禾谷镰刀菌子囊壳过度产生 1(Fpo1),在禾谷镰刀菌的子囊壳产生和成熟过程中作为全局转录阻遏物发挥作用。与野生型相比,FPO1 的缺失导致营养生长、无性孢子形成和毒力降低,并且过度产生子囊壳,其成熟更早。有趣的是,fpo1 突变体的菌丝在子囊壳产生过程中积累了过多的脂质。通过结合分子生物学、转录组学和生化方法,我们证明了有性诱导后 FPO1 的抑制导致碳代谢的重新编程,特别是脂肪酸的产生,这影响了该真菌的有性生殖。这是第一个报道的过度产生子囊壳的禾谷镰刀菌突变体,研究结果提供了对真菌有性生殖中碳代谢调节作用的全面了解。