Univ. of Kent, United Kingdom.
J Biomed Opt. 2020 Feb;25(2):1-13. doi: 10.1117/1.JBO.25.2.026501.
Confocal laser scanning enables optical sectioning in clinical fiber bundle endomicroscopes, but lower-cost, simplified endomicroscopes use widefield incoherent illumination instead. Optical sectioning can be introduced in these simple systems using structured illumination microscopy (SIM), a multiframe digital subtraction process. However, SIM results in artifacts when the probe is in motion, making the technique difficult to use in vivo and preventing the use of mosaicking to synthesize a larger effective field of view (FOV).
We report and validate an automatic motion compensation technique to overcome motion artifacts and allow generation of mosaics in SIM endomicroscopy.
Motion compensation is achieved using image registration and real-time pattern orientation correction via a digital micromirror device. We quantify the similarity of moving probe reconstructions to those acquired with a stationary probe using the relative mean of the absolute differences (MAD). We further demonstrate mosaicking with a moving probe in mechanical and freehand operation.
Reconstructed SIM images show an improvement in the MAD from 0.85 to 0.13 for lens paper and from 0.27 to 0.12 for bovine tissue. Mosaics also show vastly reduced artifacts.
The reduction in motion artifacts in individual SIM reconstructions leads to mosaics that more faithfully represent the morphology of tissue, giving clinicians a larger effective FOV than the probe itself can provide.
共焦激光扫描能够在临床纤维束内窥显微镜中进行光学切片,但成本更低、更简化的内窥显微镜则使用宽场非相干照明。这些简单的系统可以使用结构光照明显微镜 (SIM) 引入光学切片,这是一种多帧数字减法处理过程。然而,当探头移动时,SIM 会产生伪影,使得该技术难以在体内使用,并阻止使用拼接来合成更大的有效视野 (FOV)。
我们报告并验证了一种自动运动补偿技术,以克服运动伪影并允许在 SIM 内窥镜中生成拼接。
运动补偿是通过图像配准和通过数字微镜器件实时进行图案方向校正来实现的。我们使用相对平均绝对差 (MAD) 来量化移动探头重建与使用固定探头获得的重建之间的相似性。我们进一步演示了在机械和徒手操作中使用移动探头进行拼接。
重建的 SIM 图像显示,对于镜头纸,MAD 从 0.85 降低到 0.13,对于牛组织,MAD 从 0.27 降低到 0.12。拼接图像也显示出大大减少的伪影。
单个 SIM 重建中运动伪影的减少导致拼接图像更真实地反映组织形态,为临床医生提供比探头本身更大的有效 FOV。