Suppr超能文献

基于肠道微生物群的冠状动脉疾病预测诊断模型

Gut Microbiome-Based Diagnostic Model to Predict Coronary Artery Disease.

作者信息

Zheng Ying-Ying, Wu Ting-Ting, Liu Zhi-Qiang, Li Ang, Guo Qian-Qian, Ma Yan-Yan, Zhang Zeng-Lei, Xun Yi-Li, Zhang Jian-Chao, Wang Wan-Rong, Kadir Patigvl, Wang Ding-Yu, Ma Yi-Tong, Zhang Jin-Ying, Xie Xiang

机构信息

Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 P. R. China.

Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou 450052, China.

出版信息

J Agric Food Chem. 2020 Mar 18;68(11):3548-3557. doi: 10.1021/acs.jafc.0c00225. Epub 2020 Mar 6.

Abstract

In the present study, we aimed to characterize gut microbiome and develop a gut microbiome-based diagnostic model in patients with coronary artery disease (CAD). Prospectively, we collected 309 fecal samples from Central China and Northwest China and carried out the sequencing of the V3-V4 regions of the 16S rRNA gene. The gut microbiome was characterized, and microbial biomarkers were identified in 152 CAD patients and 105 healthy controls (Xinjiang cohort, = 257). Using the biomarkers, we constructed a diagnostic model and validated it externally in 34 CAD patients and 18 healthy controls (Zhengzhou cohort, = 52). Fecal microbial diversity was increased in CAD patients compared to that in healthy controls ( = 0.021). Phylum was increased in CAD patients versus healthy controls ( = 0.001). Correspondingly, 48 microbial markers were identified through a 10-fold cross-validation on a random forest model, and an area under the curve (AUC) of 87.7% (95% CI: 0.832 to 0.916, < 0.001) was achieved in the Xinjiang cohort (development cohort, = 257). Notably, an AUC of 90.4% (95% CI: 0.848 to 0.928, < 0.001) was achieved using combined analysis of gut microbial markers and clinical variables. This model provided a robust tool for the prediction of CAD. It could be widely employed to complement the clinical assessment and prevention of CAD.

摘要

在本研究中,我们旨在对冠心病(CAD)患者的肠道微生物群进行特征分析,并建立基于肠道微生物群的诊断模型。前瞻性地,我们从中国中部和西北部收集了309份粪便样本,并对16S rRNA基因的V3-V4区域进行了测序。对152例CAD患者和105例健康对照(新疆队列,n = 257)的肠道微生物群进行了特征分析,并鉴定了微生物生物标志物。利用这些生物标志物,我们构建了一个诊断模型,并在34例CAD患者和18例健康对照(郑州队列,n = 52)中进行了外部验证。与健康对照相比,CAD患者的粪便微生物多样性增加(P = 0.021)。与健康对照相比,CAD患者的厚壁菌门增加(P = 0.001)。相应地,通过随机森林模型的10倍交叉验证鉴定了48个微生物标志物,在新疆队列(开发队列,n = 257)中获得了87.7%的曲线下面积(AUC)(95%CI:0.832至0.916,P < 0.001)。值得注意的是,使用肠道微生物标志物和临床变量的联合分析获得了90.4%的AUC(95%CI:0.848至0.928,P < 0.001)。该模型为CAD的预测提供了一个强大的工具。它可广泛用于补充CAD的临床评估和预防。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验