Suppr超能文献

基于不同血尿酸水平人群肠道微生物组改变的高尿酸血症预测诊断模型。

Diagnostic model for predicting hyperuricemia based on alterations of the gut microbiome in individuals with different serum uric acid levels.

机构信息

Departent of Microbiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China.

Department of Pathology, School of Basic Medical Sciences, XinJiang Second Medical College, Karamay, China.

出版信息

Front Endocrinol (Lausanne). 2022 Sep 27;13:925119. doi: 10.3389/fendo.2022.925119. eCollection 2022.

Abstract

BACKGROUND

We aimed to assess the differences in the gut microbiome among participants with different uric acid levels (hyperuricemia [HUA] patients, low serum uric acid [LSU] patients, and controls with normal levels) and to develop a model to predict HUA based on microbial biomarkers.

METHODS

We sequenced the V3-V4 variable region of the 16S rDNA gene in 168 fecal samples from HUA patients (n=50), LSU patients (n=61), and controls (n=57). We then analyzed the differences in the gut microbiome between these groups. To identify gut microbial biomarkers, the 107 HUA patients and controls were randomly divided (2:1) into development and validation groups and 10-fold cross-validation of a random forest model was performed. We then established three diagnostic models: a clinical model, microbial biomarker model, and combined model.

RESULTS

The gut microbial α diversity, in terms of the Shannon and Simpson indices, was decreased in LSU and HUA patients compared to controls, but only the decreases in the HUA group were significant (P=0.0029 and P=0.013, respectively). The phylum (<0.001) and genus (=0.02) were significantly increased in HUA patients compared to controls, while the genus was decreased (=0.02). Twelve microbial biomarkers were identified. The area under the curve (AUC) for these biomarkers in the development group was 84.9% (<0.001). Notably, an AUC of 89.1% (<0.001) was achieved by combining the microbial biomarkers and clinical factors.

CONCLUSIONS

The combined model is a reliable tool for predicting HUA and could be used to assist in the clinical evaluation of patients and prevention of HUA.

摘要

背景

本研究旨在评估不同尿酸水平(高尿酸血症[HUA]患者、低血清尿酸[LSU]患者和尿酸水平正常的对照组)人群肠道微生物组的差异,并基于微生物生物标志物建立预测 HUA 的模型。

方法

我们对 168 例 HUA 患者(n=50)、LSU 患者(n=61)和对照组(n=57)的粪便样本 16S rDNA 基因 V3-V4 可变区进行测序,然后分析这些组间肠道微生物组的差异。为了识别肠道微生物生物标志物,将 107 例 HUA 患者和对照组随机分为(2:1)开发和验证组,并对随机森林模型进行 10 折交叉验证。然后我们建立了三种诊断模型:临床模型、微生物生物标志物模型和联合模型。

结果

与对照组相比,LSU 和 HUA 患者的肠道微生物 α 多样性(Shannon 和 Simpson 指数)降低,但仅 HUA 组的降低具有统计学意义(P=0.0029 和 P=0.013)。与对照组相比,HUA 患者的门(P<0.001)和属(=0.02)显著增加,而属(=0.02)减少。鉴定出 12 个微生物生物标志物。这些生物标志物在开发组中的曲线下面积(AUC)为 84.9%(<0.001)。值得注意的是,微生物生物标志物与临床因素相结合的 AUC 为 89.1%(<0.001)。

结论

联合模型是预测 HUA 的可靠工具,可用于协助临床评估患者和预防 HUA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/091c/9553226/4493e2da3de2/fendo-13-925119-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验