Department of Computing Science and Mathematics, University of Stirling, Stirling, FK94LA, UK
Laboratoire LISIC, Université du Littoral Côte d'Opale, France
Evol Comput. 2020 Winter;28(4):621-641. doi: 10.1162/evco_a_00271. Epub 2020 Feb 26.
Connection patterns among (LONs) can inform heuristic design for optimisation. LON research has predominantly required complete enumeration of a fitness landscape, thereby restricting analysis to problems diminutive in size compared to real-life situations. LON algorithms are therefore important. In this article, we study LON construction algorithms for the Quadratic Assignment Problem (QAP). Using machine learning, we use estimated LON features to predict search performance for competitive heuristics used in the QAP domain. The results show that by using random forest regression, LON construction algorithms produce fitness landscape features which can explain almost all search variance. We find that LON samples better relate to search than enumerated LONs do. The importance of fitness levels of sampled LONs in search predictions is crystallised. Features from LONs produced by different algorithms are combined in predictions for the first time, with promising results for this "super-sampling": a model to predict tabu search success explained 99% of variance. Arguments are made for the use-case of each LON algorithm and for combining the exploitative process of one with the exploratory optimisation of the other.
LON 之间的连接模式可以为启发式设计提供优化信息。LON 研究主要需要对适应度景观进行完全枚举,从而将分析限制在与现实情况相比规模较小的问题上。因此,LON 算法非常重要。在本文中,我们研究了用于二次分配问题 (QAP) 的 LON 构建算法。我们使用机器学习,使用估计的 LON 特征来预测用于 QAP 领域的竞争启发式搜索的性能。结果表明,通过使用随机森林回归,LON 构建算法生成的适应度景观特征可以解释几乎所有的搜索方差。我们发现,与枚举的 LON 相比,抽样的 LON 更好地与搜索相关。抽样的 LON 对搜索预测的重要性得到了明确。首次将来自不同算法的 LON 生成的特征结合到预测中,这种“超采样”的结果很有前景:一个能够解释 99%方差的预测禁忌搜索成功的模型。本文为每个 LON 算法的用例以及将一个算法的探索性优化与另一个算法的探索性优化相结合的用例提供了论据。