Suppr超能文献

基于深度学习的血管提取和狭窄检测技术对冠心病的诊断性能。

Diagnostic performance of deep learning-based vascular extraction and stenosis detection technique for coronary artery disease.

机构信息

Department of Radiology, The First Affiliated Hospital of Soochow University, NO.899 Pinghai Road, Gusu District, Suzhou, Jiangsu, China.

Institute of Medical Imaging, Soochow University, Suzhou, Jiangsu, China.

出版信息

Br J Radiol. 2020 Sep 1;93(1113):20191028. doi: 10.1259/bjr.20191028. Epub 2020 Mar 25.

Abstract

OBJECTIVE

To investigate the diagnostic performance of deep learning (DL)-based vascular extraction and stenosis detection technology in assessing coronary artery disease (CAD).

METHODS

The diagnostic performance of DL technology was evaluated by retrospective analysis of coronary computed tomography angiography in 124 suspected CAD patients, using invasive coronary angiography as reference standard. Lumen diameter stenosis ≥50% was considered obstructive, and the diagnostic performances were evaluated at per-patient, per-vessel and per-segment levels. The diagnostic performances between DL model and reader model were compared by the areas under the receiver operating characteristics curves (AUCs).

RESULTS

In patient-based analysis, AUC of 0.78 was obtained by DL model to detect obstructive CAD [sensitivity of 94%, specificity of 63%, positive predictive value of 94%, and negative predictive value of 59%], While AUC by reader model was 0.74 (sensitivity of 97%, specificity of 50%, positive predictive value of 93%, negative predictive value of 73%). In vessel-based analysis, the AUCs of DL model and reader model were 0.87 and 0.89 respectively. In segment-based analysis, the AUCs of 0.84 and 0.89 were obtained by DL model and reader model respectively. It took 0.47 min to analyze all segments per patient by DL model, which is significantly less than reader model (29.65 min) ( < 0.001).

CONCLUSION

The DL technology can accurately and effectively identify obstructive CAD, with less time-consuming, and it could be a reliable diagnostic tool to detect CAD.

ADVANCES IN KNOWLEDGE

The DL technology has valuable prospect with the diagnostic ability to detect CAD.

摘要

目的

研究基于深度学习(DL)的血管提取和狭窄检测技术在评估冠状动脉疾病(CAD)中的诊断性能。

方法

通过回顾性分析 124 例疑似 CAD 患者的冠状动脉计算机断层血管造影,以有创冠状动脉造影为参考标准,评估 DL 技术的诊断性能。将管腔直径狭窄≥50%定义为阻塞性,在患者、血管和节段水平上评估诊断性能。通过受试者工作特征曲线下面积(AUC)比较 DL 模型和读者模型之间的诊断性能。

结果

在基于患者的分析中,DL 模型检测阻塞性 CAD 的 AUC 为 0.78[敏感度为 94%,特异度为 63%,阳性预测值为 94%,阴性预测值为 59%],而读者模型的 AUC 为 0.74[敏感度为 97%,特异度为 50%,阳性预测值为 93%,阴性预测值为 73%]。在基于血管的分析中,DL 模型和读者模型的 AUC 分别为 0.87 和 0.89。在基于节段的分析中,DL 模型和读者模型的 AUC 分别为 0.84 和 0.89。DL 模型分析每位患者所有节段的时间为 0.47 分钟,明显少于读者模型(29.65 分钟)(<0.001)。

结论

DL 技术可以准确有效地识别阻塞性 CAD,且耗时更少,可能是一种可靠的 CAD 诊断工具。

知识进展

DL 技术具有诊断 CAD 的有价值前景。

相似文献

1
Diagnostic performance of deep learning-based vascular extraction and stenosis detection technique for coronary artery disease.
Br J Radiol. 2020 Sep 1;93(1113):20191028. doi: 10.1259/bjr.20191028. Epub 2020 Mar 25.
9
CT myocardial perfusion and coronary CT angiography: Influence of coronary calcium on a stress-rest protocol.
J Cardiovasc Comput Tomogr. 2016 May-Jun;10(3):215-20. doi: 10.1016/j.jcct.2016.01.013. Epub 2016 Jan 30.

引用本文的文献

1
Predictive computational framework to provide a digital twin for personalized cardiovascular medicine.
Commun Med (Lond). 2025 Aug 25;5(1):370. doi: 10.1038/s43856-025-01055-7.
3
Burnout crisis in Chinese radiology: will artificial intelligence help?
Eur Radiol. 2025 Mar;35(3):1215-1224. doi: 10.1007/s00330-024-11206-4. Epub 2024 Nov 20.
4
Revolutionising Acute Cardiac Care With Artificial Intelligence: Opportunities and Challenges.
Can J Cardiol. 2024 Oct;40(10):1813-1827. doi: 10.1016/j.cjca.2024.06.011. Epub 2024 Jun 18.
5
Automated detection and classification of coronary atherosclerotic plaques on coronary CT angiography using deep learning algorithm.
Quant Imaging Med Surg. 2024 Jun 1;14(6):3837-3850. doi: 10.21037/qims-23-1513. Epub 2024 May 24.
6
Deep learning-based coronary artery calcium score to predict coronary artery disease in type 2 diabetes mellitus.
Heliyon. 2024 Mar 10;10(6):e27937. doi: 10.1016/j.heliyon.2024.e27937. eCollection 2024 Mar 30.
10
Developing a Deep-Learning-Based Coronary Artery Disease Detection Technique Using Computer Tomography Images.
Diagnostics (Basel). 2023 Mar 31;13(7):1312. doi: 10.3390/diagnostics13071312.

本文引用的文献

1
2
Prognostic Value and Risk Continuum of Noninvasive Fractional Flow Reserve Derived from Coronary CT Angiography.
Radiology. 2019 Aug;292(2):343-351. doi: 10.1148/radiol.2019182264. Epub 2019 Jun 11.
3
Automated plaque analysis for the prognostication of major adverse cardiac events.
Eur J Radiol. 2019 Jul;116:76-83. doi: 10.1016/j.ejrad.2019.04.013. Epub 2019 Apr 27.
4
Coronary Calcium Detection Based on Improved Deep Residual Network in Mimics.
J Med Syst. 2019 Mar 25;43(5):119. doi: 10.1007/s10916-019-1218-4.
8
Coronary CT Angiography and 5-Year Risk of Myocardial Infarction.
N Engl J Med. 2018 Sep 6;379(10):924-933. doi: 10.1056/NEJMoa1805971. Epub 2018 Aug 25.
9
Automated Agatston Score Computation in non-ECG Gated CT Scans Using Deep Learning.
Proc SPIE Int Soc Opt Eng. 2018 Feb;10574. doi: 10.1117/12.2293681. Epub 2018 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验