Fernandez-Corbaton Ivan, Beutel Dominik, Rockstuhl Carsten, Pausch Ansgar, Klopper Wim
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany.
Institut für Theoretische Festkörperphysik, Karlsruhe Institute of Technology (KIT), P.O. Box 6980, 76049, Karlsruhe, Germany.
Chemphyschem. 2020 May 5;21(9):878-887. doi: 10.1002/cphc.202000072. Epub 2020 Apr 9.
We outline a methodology for efficiently computing the electromagnetic response of molecular ensembles. The methodology is based on the link that we establish between quantum-chemical simulations and the transfer matrix (T-matrix) approach, a common tool in physics and engineering. We exemplify and analyze the accuracy of the methodology by using the time-dependent Hartree-Fock theory simulation data of a single chiral molecule to compute the T-matrix of a cross-like arrangement of four copies of the molecule, and then computing the circular dichroism of the cross. The results are in very good agreement with full quantum-mechanical calculations on the cross. Importantly, the choice of computing circular dichroism is arbitrary: Any kind of electromagnetic response of an object can be computed from its T-matrix. We also show, by means of another example, how the methodology can be used to predict experimental measurements on a molecular material of macroscopic dimensions. This is possible because, once the T-matrices of the individual components of an ensemble are known, the electromagnetic response of the ensemble can be efficiently computed. This holds for arbitrary arrangements of a large number of molecules, as well as for periodic or aperiodic molecular arrays. We identify areas of research for further improving the accuracy of the method, as well as new fundamental and technological research avenues based on the use of the T-matrices of molecules and molecular ensembles for quantifying their degrees of symmetry breaking. We provide T-matrix-based formulas for computing traditional chiro-optical properties like (oriented) circular dichroism, and also for quantifying electromagnetic duality and electromagnetic chirality. The formulas are valid for light-matter interactions of arbitrarily-high multipolar orders.
我们概述了一种有效计算分子集合体电磁响应的方法。该方法基于我们在量子化学模拟与转移矩阵(T 矩阵)方法之间建立的联系,T 矩阵方法是物理和工程领域常用的工具。我们通过使用单个手性分子的含时 Hartree-Fock 理论模拟数据来计算该分子四个副本呈十字形排列的 T 矩阵,进而计算十字形的圆二色性,以此举例并分析该方法的准确性。结果与对十字形进行的全量子力学计算非常吻合。重要的是,选择计算圆二色性是任意的:物体的任何一种电磁响应都可以从其 T 矩阵计算得出。我们还通过另一个例子展示了该方法如何用于预测对宏观尺寸分子材料的实验测量。这是可行的,因为一旦知道了集合体各个组分的 T 矩阵,就可以有效地计算集合体的电磁响应。这适用于大量分子的任意排列,以及周期性或非周期性分子阵列。我们确定了进一步提高该方法准确性的研究领域,以及基于使用分子和分子集合体的 T 矩阵来量化其对称性破缺程度的新的基础研究和技术研究途径。我们提供了基于 T 矩阵的公式,用于计算诸如(取向)圆二色性等传统手性光学性质,以及用于量化电磁对偶性和电磁手性。这些公式适用于任意高阶多极的光与物质相互作用。