Whittam Mitchell R, Zerulla Benedikt, Krstić Marjan, Vavilin Maxim, Holzer Christof, Nyman Markus, Rebholz Lukas, Fernandez-Corbaton Ivan, Rockstuhl Carsten
Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany.
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany.
Sci Rep. 2024 Jul 22;14(1):16812. doi: 10.1038/s41598-024-66443-w.
Understanding the impact of the relativistic motion of a chiral molecule on its optical response is a prime challenge for fundamental science, but it also has a direct practical relevance in our search for extraterrestrial life. To contribute to these significant developments, we describe a multi-scale computational framework that combines quantum chemistry calculations and full-wave optical simulations to predict the chiral optical response from molecules moving at relativistic speeds. Specifically, the effect of a relativistic motion on the transmission circular dichroism (TCD) of three life-essential biomolecules, namely, B-DNA, chlorophyll a, and chlorophyll b, is investigated. Inspired by previous experiments to detect interstellar chiral molecules, we assume that the molecules move between a stationary observer and a light source, and we study the rotationally averaged TCD as a function of the speed of the molecule.We find that the TCD spectrum that contains the signatures of the molecules shifts with increasing speed to shorter wavelengths, with the effects already being visible for moderate velocities.
理解手性分子的相对论运动对其光学响应的影响是基础科学面临的主要挑战,但在我们寻找外星生命的过程中也具有直接的实际意义。为推动这些重大进展,我们描述了一个多尺度计算框架,该框架结合量子化学计算和全波光学模拟,以预测以相对论速度运动的分子的手性光学响应。具体而言,研究了相对论运动对三种生命必需生物分子(即B - DNA、叶绿素a和叶绿素b)的透射圆二色性(TCD)的影响。受先前探测星际手性分子实验的启发,我们假设分子在静止观察者和光源之间移动,并研究旋转平均TCD随分子速度的变化。我们发现,包含分子特征的TCD光谱随着速度增加向更短波长移动,在中等速度下这些效应就已可见。