Suppr超能文献

通过 RNA 聚合酶的细胞间变异性探究转录延伸的机制。

Probing Mechanisms of Transcription Elongation Through Cell-to-Cell Variability of RNA Polymerase.

机构信息

Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts.

Max Planck institute for the Physics of Complex Systems, Dresden, Germany.

出版信息

Biophys J. 2020 Apr 7;118(7):1769-1781. doi: 10.1016/j.bpj.2020.02.002. Epub 2020 Feb 12.

Abstract

The process of transcription initiation and elongation are primary points of control in the regulation of gene expression. Although biochemical studies have uncovered the mechanisms involved in controlling transcription at each step, how these mechanisms manifest in vivo at the level of individual genes is still unclear. Recent experimental advances have enabled single-cell measurements of RNA polymerase (RNAP) molecules engaged in the process of transcribing a gene of interest. In this article, we use Gillespie simulations to show that measurements of cell-to-cell variability of RNAP numbers and interpolymerase distances can reveal the prevailing mode of regulation of a given gene. Mechanisms of regulation at each step, from initiation to elongation dynamics, produce qualitatively distinct signatures, which can further be used to discern between them. Most intriguingly, depending on the initiation kinetics, stochastic elongation can either enhance or suppress cell-to-cell variability at the RNAP level. To demonstrate the value of this framework, we analyze RNAP number distribution data for ribosomal genes in Saccharomyces cerevisiae from three previously published studies and show that this approach provides crucial mechanistic insights into the transcriptional regulation of these genes.

摘要

转录起始和延伸过程是基因表达调控的主要控制点。尽管生化研究已经揭示了控制每个步骤转录的机制,但这些机制如何在单个基因水平上在体内表现仍然不清楚。最近的实验进展使得能够对参与感兴趣基因转录的 RNA 聚合酶 (RNAP) 分子进行单细胞测量。在本文中,我们使用 Gillespie 模拟来表明,测量 RNAP 数量和聚合酶间距离的细胞间变异性可以揭示给定基因的主要调控模式。从起始到延伸动力学的每个步骤的调控机制产生定性不同的特征,可进一步用于区分它们。最有趣的是,根据起始动力学,随机延伸可以增强或抑制 RNAP 水平的细胞间变异性。为了证明该框架的价值,我们分析了来自三个先前发表的研究中酿酒酵母核糖体基因的 RNAP 数量分布数据,并表明该方法为这些基因的转录调控提供了关键的机制见解。

相似文献

1
Probing Mechanisms of Transcription Elongation Through Cell-to-Cell Variability of RNA Polymerase.
Biophys J. 2020 Apr 7;118(7):1769-1781. doi: 10.1016/j.bpj.2020.02.002. Epub 2020 Feb 12.
2
Transcription factor dynamics.
Microbiology (Reading). 2008 Jul;154(Pt 7):1837-1844. doi: 10.1099/mic.0.2008/018549-0.
3
Bacterial RNA polymerase can retain σ70 throughout transcription.
Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):602-7. doi: 10.1073/pnas.1513899113. Epub 2016 Jan 5.
5
Distribution of Initiation Times Reveals Mechanisms of Transcriptional Regulation in Single Cells.
Biophys J. 2018 May 8;114(9):2072-2082. doi: 10.1016/j.bpj.2018.03.031.
7
Role of the trigger loop in translesion RNA synthesis by bacterial RNA polymerase.
J Biol Chem. 2020 Jul 10;295(28):9583-9595. doi: 10.1074/jbc.RA119.011844. Epub 2020 May 21.
8
Spatial organization of RNA polymerase and its relationship with transcription in .
Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):20115-20123. doi: 10.1073/pnas.1903968116. Epub 2019 Sep 16.
9
A Mechanistic Model for Cooperative Behavior of Co-transcribing RNA Polymerases.
PLoS Comput Biol. 2016 Aug 12;12(8):e1005069. doi: 10.1371/journal.pcbi.1005069. eCollection 2016 Aug.
10
A spatially resolved stochastic model reveals the role of supercoiling in transcription regulation.
PLoS Comput Biol. 2022 Sep 19;18(9):e1009788. doi: 10.1371/journal.pcbi.1009788. eCollection 2022 Sep.

引用本文的文献

2
Regulation of the dynamic RNA Pol II elongation rate in Drosophila embryos.
Cell Rep. 2023 Oct 31;42(10):113225. doi: 10.1016/j.celrep.2023.113225. Epub 2023 Oct 12.
3
Stochastic modeling of the mRNA life process: A generalized master equation.
Biophys J. 2023 Oct 17;122(20):4023-4041. doi: 10.1016/j.bpj.2023.08.024. Epub 2023 Aug 30.
4
Deciphering a global source of non-genetic heterogeneity in cancer cells.
Nucleic Acids Res. 2023 Sep 22;51(17):9019-9038. doi: 10.1093/nar/gkad666.
6
Collective polymerase dynamics emerge from DNA supercoiling during transcription.
Biophys J. 2022 Nov 1;121(21):4153-4165. doi: 10.1016/j.bpj.2022.09.026. Epub 2022 Sep 27.
7
Real-time single-cell characterization of the eukaryotic transcription cycle reveals correlations between RNA initiation, elongation, and cleavage.
PLoS Comput Biol. 2021 May 18;17(5):e1008999. doi: 10.1371/journal.pcbi.1008999. eCollection 2021 May.
9
A matter of time: Using dynamics and theory to uncover mechanisms of transcriptional bursting.
Curr Opin Cell Biol. 2020 Dec;67:147-157. doi: 10.1016/j.ceb.2020.08.001. Epub 2020 Nov 24.

本文引用的文献

1
Nucleated transcriptional condensates amplify gene expression.
Nat Cell Biol. 2020 Oct;22(10):1187-1196. doi: 10.1038/s41556-020-00578-6. Epub 2020 Sep 14.
3
Intrinsic Dynamics of a Human Gene Reveal the Basis of Expression Heterogeneity.
Cell. 2019 Jan 10;176(1-2):213-226.e18. doi: 10.1016/j.cell.2018.11.026. Epub 2018 Dec 13.
4
Diverse Spatial Expression Patterns Emerge from Unified Kinetics of Transcriptional Bursting.
Cell. 2018 Oct 18;175(3):835-847.e25. doi: 10.1016/j.cell.2018.09.056.
5
Coactivator condensation at super-enhancers links phase separation and gene control.
Science. 2018 Jul 27;361(6400). doi: 10.1126/science.aar3958. Epub 2018 Jun 21.
6
Distribution of Initiation Times Reveals Mechanisms of Transcriptional Regulation in Single Cells.
Biophys J. 2018 May 8;114(9):2072-2082. doi: 10.1016/j.bpj.2018.03.031.
7
Effects of mRNA Degradation and Site-Specific Transcriptional Pausing on Protein Expression Noise.
Biophys J. 2018 Apr 10;114(7):1718-1729. doi: 10.1016/j.bpj.2018.02.010.
8
Nascent RNA kinetics: Transient and steady state behavior of models of transcription.
Phys Rev E. 2018 Feb;97(2-1):022402. doi: 10.1103/PhysRevE.97.022402.
9
Estrogen-dependent control and cell-to-cell variability of transcriptional bursting.
Mol Syst Biol. 2018 Feb 23;14(2):e7678. doi: 10.15252/msb.20177678.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验