Jakub Zdenek, Hulva Jan, Ryan Paul T P, Duncan David A, Payne David J, Bliem Roland, Ulreich Manuel, Hofegger Patrick, Kraushofer Florian, Meier Matthias, Schmid Michael, Diebold Ulrike, Parkinson Gareth S
Institute of Applied Physics, TU Wien, 1040 Vienna, Austria.
Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK and Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ, UK.
Nanoscale. 2020 Mar 14;12(10):5866-5875. doi: 10.1039/c9nr10087c. Epub 2020 Feb 27.
The structure of a catalyst often changes in reactive environments, and following the structural evolution is crucial for the identification of the catalyst's active phase and reaction mechanism. Here we present an atomic-scale study of CO oxidation on a model Rh/FeO(001) "single-atom" catalyst, which has a very different evolution depending on which of the two reactants, O or CO, is adsorbed first. Using temperature-programmed desorption (TPD) combined with scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), we show that O destabilizes Rh atoms, leading to the formation of RhO clusters; these catalyze CO oxidation via a Langmuir-Hinshelwood mechanism at temperatures as low as 200 K. If CO adsorbs first, the system is poisoned for direct interaction with O, and CO oxidation is dominated by a Mars-van-Krevelen pathway at 480 K.
催化剂的结构在反应环境中常常会发生变化,追踪其结构演变对于确定催化剂的活性相和反应机理至关重要。在此,我们展示了对一种模型Rh/FeO(001)“单原子”催化剂上CO氧化的原子尺度研究,该催化剂根据两种反应物(O或CO)中哪一种先吸附而有非常不同的演变。通过程序升温脱附(TPD)结合扫描隧道显微镜(STM)和X射线光电子能谱(XPS),我们表明O会使Rh原子不稳定,导致形成RhO团簇;这些团簇在低至200 K的温度下通过朗缪尔-欣谢尔伍德机制催化CO氧化。如果CO先吸附,该系统会因与O的直接相互作用而中毒,并且CO氧化在480 K时由Mars-van-Krevelen途径主导。