Suppr超能文献

基于集成学习的单细胞数据分类和参考图谱投射方法。

Ensemble learning for classifying single-cell data and projection across reference atlases.

机构信息

Department of Neurosurgery, University of California, San Francisco, CA 94158, USA.

出版信息

Bioinformatics. 2020 Jun 1;36(11):3585-3587. doi: 10.1093/bioinformatics/btaa137.

Abstract

SUMMARY

Single-cell data are being generated at an accelerating pace. How best to project data across single-cell atlases is an open problem. We developed a boosted learner that overcomes the greatest challenge with status quo classifiers: low sensitivity, especially when dealing with rare cell types. By comparing novel and published data from distinct scRNA-seq modalities that were acquired from the same tissues, we show that this approach preserves cell-type labels when mapping across diverse platforms.

AVAILABILITY AND IMPLEMENTATION

https://github.com/diazlab/ELSA.

CONTACT

aaron.diaz@ucsf.edu.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

摘要

单细胞数据正在以前所未有的速度产生。如何最好地在单细胞图谱中投射数据是一个悬而未决的问题。我们开发了一种增强学习器,克服了现有分类器的最大挑战:低灵敏度,尤其是在处理稀有细胞类型时。通过比较来自同一组织的不同 scRNA-seq 模式的新颖和已发表的数据,我们表明,这种方法在跨多种平台映射时保留了细胞类型标签。

可用性和实现

https://github.com/diazlab/ELSA。

联系人

aaron.diaz@ucsf.edu

补充信息

补充数据可在生物信息学在线获得。

相似文献

2
SCell: integrated analysis of single-cell RNA-seq data.SCell:单细胞RNA测序数据的综合分析
Bioinformatics. 2016 Jul 15;32(14):2219-20. doi: 10.1093/bioinformatics/btw201. Epub 2016 Apr 19.
9
alona: a web server for single-cell RNA-seq analysis.alona:单细胞 RNA-seq 分析的 Web 服务器。
Bioinformatics. 2020 Jun 1;36(12):3910-3912. doi: 10.1093/bioinformatics/btaa269.

引用本文的文献

5
Transfer learning enables predictions in network biology.迁移学习可实现网络生物学预测。
Nature. 2023 Jun;618(7965):616-624. doi: 10.1038/s41586-023-06139-9. Epub 2023 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验