Suppr超能文献

通过空间贝叶斯变量选择实现平滑的图像标量回归

Smooth Scalar-on-Image Regression via Spatial Bayesian Variable Selection.

作者信息

Goldsmith Jeff, Huang Lei, Crainiceanu Ciprian M

机构信息

Department of Biostatistics, Columbia University School of Public Health.

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health.

出版信息

J Comput Graph Stat. 2014 Jan 1;23(1):46-64. doi: 10.1080/10618600.2012.743437.

Abstract

We develop scalar-on-image regression models when images are registered multidimensional manifolds. We propose a fast and scalable Bayes inferential procedure to estimate the image coefficient. The central idea is the combination of an Ising prior distribution, which controls a latent binary indicator map, and an intrinsic Gaussian Markov random field, which controls the smoothness of the nonzero coefficients. The model is fit using a single-site Gibbs sampler, which allows fitting within minutes for hundreds of subjects with predictor images containing thousands of locations. The code is simple and is provided in less than one page in the Appendix. We apply this method to a neuroimaging study where cognitive outcomes are regressed on measures of white matter microstructure at every voxel of the corpus callosum for hundreds of subjects.

摘要

当图像被配准到多维流形时,我们开发了图像上标量回归模型。我们提出了一种快速且可扩展的贝叶斯推理程序来估计图像系数。核心思想是将控制潜在二元指示图的伊辛先验分布与控制非零系数平滑度的内在高斯马尔可夫随机场相结合。该模型使用单站点吉布斯采样器进行拟合,对于数百名受试者,在包含数千个位置的预测图像的情况下,几分钟内即可完成拟合。代码很简单,附录中不到一页纸就给出了。我们将此方法应用于一项神经影像学研究,其中对数百名受试者胼胝体每个体素处的白质微观结构测量值进行认知结果回归分析。

相似文献

3
Quantile Function on Scalar Regression Analysis for Distributional Data.分布数据标量回归分析中的分位数函数
J Am Stat Assoc. 2020;115(529):90-106. doi: 10.1080/01621459.2019.1609969. Epub 2019 Jun 21.
8
Bayesian Variable Selection for Gaussian copula regression models.高斯Copula回归模型的贝叶斯变量选择
J Comput Graph Stat. 2020 Dec 10;30(3):578-593. doi: 10.1080/10618600.2020.1840997.
9
Scalar-on-Image Regression via the Soft-Thresholded Gaussian Process.基于软阈值高斯过程的图像标量回归
Biometrika. 2018 Mar;105(1):165-184. doi: 10.1093/biomet/asx075. Epub 2018 Jan 19.

引用本文的文献

7
Tensor response quantile regression with neuroimaging data.张量响应分位数回归与神经影像学数据。
Biometrics. 2023 Sep;79(3):1947-1958. doi: 10.1111/biom.13809. Epub 2022 Dec 27.
8
SCALAR ON NETWORK REGRESSION VIA BOOSTING.基于提升法的网络回归中的标量
Ann Appl Stat. 2022 Dec;16(4):2755-2773. doi: 10.1214/22-aoas1612. Epub 2022 Sep 26.
10
Tucker Tensor Regression and Neuroimaging Analysis.塔克张量回归与神经影像分析
Stat Biosci. 2018 Dec;10(3):520-545. doi: 10.1007/s12561-018-9215-6. Epub 2018 Mar 7.

本文引用的文献

1
Penalized Functional Regression.惩罚性函数回归
J Comput Graph Stat. 2011 Dec 1;20(4):830-851. doi: 10.1198/jcgs.2010.10007.
4
Functional generalized linear models with images as predictors.以图像作为预测变量的功能广义线性模型。
Biometrics. 2010 Mar;66(1):61-9. doi: 10.1111/j.1541-0420.2009.01233.x. Epub 2009 May 8.
7
Diffusion tensor imaging: concepts and applications.扩散张量成像:概念与应用
J Magn Reson Imaging. 2001 Apr;13(4):534-46. doi: 10.1002/jmri.1076.
8
In vivo fiber tractography using DT-MRI data.使用扩散张量磁共振成像(DT-MRI)数据进行活体纤维束成像。
Magn Reson Med. 2000 Oct;44(4):625-32. doi: 10.1002/1522-2594(200010)44:4<625::aid-mrm17>3.0.co;2-o.
9
Diffusion magnetic resonance imaging: its principle and applications.扩散磁共振成像:原理与应用
Anat Rec. 1999 Jun 15;257(3):102-9. doi: 10.1002/(SICI)1097-0185(19990615)257:3<102::AID-AR7>3.0.CO;2-6.
10
MR diffusion tensor spectroscopy and imaging.磁共振扩散张量波谱成像
Biophys J. 1994 Jan;66(1):259-67. doi: 10.1016/S0006-3495(94)80775-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验