Suppr超能文献

基于表面响应的周期性干扰混合器中脂质体特性建模

Surface Response Based Modeling of Liposome Characteristics in a Periodic Disturbance Mixer.

作者信息

López Rubén R, Ocampo Ixchel, Sánchez Luz-María, Alazzam Anas, Bergeron Karl-F, Camacho-León Sergio, Mounier Catherine, Stiharu Ion, Nerguizian Vahé

机构信息

Department of Electrical Engineering, École de technologie supérieure, 1100 Notre Dame-West, Montreal, QC H3C 1K3, Canada.

School of Engineering and Sciences, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, N.L., Mexico.

出版信息

Micromachines (Basel). 2020 Feb 25;11(3):235. doi: 10.3390/mi11030235.

Abstract

Liposomes nanoparticles (LNPs) are vesicles that encapsulate drugs, genes, and imaging labels for advanced delivery applications. Control and tuning liposome physicochemical characteristics such as size, size distribution, and zeta potential are crucial for their functionality. Liposome production using micromixers has shown better control over liposome characteristics compared with classical approaches. In this work, we used our own designed and fabricated Periodic Disturbance Micromixer (PDM). We used Design of Experiments (DoE) and Response Surface Methodology (RSM) to statistically model the relationship between the Total Flow Rate (TFR) and Flow Rate Ratio (FRR) and the resulting liposomes physicochemical characteristics. TFR and FRR effectively control liposome size in the range from 52 nm to 200 nm. In contrast, no significant effect was observed for the TFR on the liposomes Polydispersity Index (PDI); conversely, FRR around 2.6 was found to be a threshold between highly monodisperse and low polydispersed populations. Moreover, it was shown that the zeta potential is independent of TFR and FRR. The developed model presented on the paper enables to pre-establish the experimental conditions under which LNPs would likely be produced within a specified size range. Hence, the model utility was demonstrated by showing that LNPs were produced under such conditions.

摘要

脂质体纳米颗粒(LNPs)是一种囊泡,可包裹药物、基因和成像标记物,用于先进的递送应用。控制和调节脂质体的物理化学特性,如尺寸、尺寸分布和zeta电位,对其功能至关重要。与传统方法相比,使用微混合器生产脂质体对脂质体特性的控制更好。在这项工作中,我们使用了自行设计和制造的周期性扰动微混合器(PDM)。我们使用实验设计(DoE)和响应面方法(RSM)对总流速(TFR)和流速比(FRR)与所得脂质体物理化学特性之间的关系进行统计建模。TFR和FRR有效地将脂质体尺寸控制在52纳米至200纳米范围内。相比之下,未观察到TFR对脂质体多分散指数(PDI)有显著影响;相反,发现约2.6的FRR是高单分散群体和低多分散群体之间的阈值。此外,研究表明zeta电位与TFR和FRR无关。本文提出的模型能够预先确定在特定尺寸范围内可能生产LNPs的实验条件。因此,通过展示在这些条件下生产出LNPs证明了该模型的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fa5/7143066/24bced6b611a/micromachines-11-00235-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验