Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA.
Science. 2020 Feb 28;367(6481):1030-1034. doi: 10.1126/science.aax3520.
Fast-charging batteries typically use electrodes capable of accommodating lithium continuously by means of solid-solution transformation because they have few kinetic barriers apart from ionic diffusion. One exception is lithium titanate (LiTiO), an anode exhibiting extraordinary rate capability apparently inconsistent with its two-phase reaction and slow Li diffusion in both phases. Through real-time tracking of Li migration using operando electron energy-loss spectroscopy, we reveal that facile transport in Li TiO is enabled by kinetic pathways comprising distorted Li polyhedra in metastable intermediates along two-phase boundaries. Our work demonstrates that high-rate capability may be enabled by accessing the energy landscape above the ground state, which may have fundamentally different kinetic mechanisms from the ground-state macroscopic phases. This insight should present new opportunities in searching for high-rate electrode materials.
快充电池通常使用能够通过固溶相变不断容纳锂离子的电极,因为除了离子扩散之外,它们的动力学障碍很少。钛酸锂 (LiTiO) 是一个例外,它作为一种阳极表现出非凡的倍率性能,这显然与其两相反应和两相中缓慢的锂离子扩散不一致。通过使用原位电子能量损失谱实时跟踪锂离子的迁移,我们揭示了在两相边界处的亚稳中间体中包含变形的 Li 多面体的动力学途径,使得 LiTiO 中的锂离子能够进行快速传输。我们的工作表明,通过进入基态以上的能量景观,可以实现高倍率能力,这可能与基态宏观相具有根本不同的动力学机制。这一见解应该为寻找高倍率电极材料提供新的机会。