Suppr超能文献

揭示层状富锂氧化物正极的降解途径。

Revealing the degradation pathways of layered Li-rich oxide cathodes.

作者信息

Liu Zhimeng, Zeng Yuqiang, Tan Junyang, Wang Hailong, Zhu Yudong, Geng Xin, Guttmann Peter, Hou Xu, Yang Yang, Xu Yunkai, Cloetens Peter, Zhou Dong, Wei Yinping, Lu Jun, Li Jie, Liu Bilu, Winter Martin, Kostecki Robert, Lin Yuanjing, He Xin

机构信息

School of Chemical Engineering, Sichuan University, Chengdu, China.

School of Microelectronics, Southern University of Science and Technology, Shenzhen, China.

出版信息

Nat Nanotechnol. 2024 Dec;19(12):1821-1830. doi: 10.1038/s41565-024-01773-4. Epub 2024 Sep 2.

Abstract

Layered lithium-rich transition metal oxides are promising cathode candidates for high-energy-density lithium batteries due to the redox contributions from transition metal cations and oxygen anions. However, their practical application is hindered by gradual capacity fading and voltage decay. Although oxygen loss and phase transformation are recognized as primary factors, the structural deterioration, chemical rearrangement, kinetic and thermodynamic effects remain unclear. Here we integrate analysis of morphological, structural and oxidation state evolution from individual atoms to secondary particles. By performing nanoscale to microscale characterizations, distinct structural change pathways associated with intraparticle heterogeneous reactions are identified. The high level of oxygen defects formed throughout the particle by slow electrochemical activation triggers progressive phase transformation and the formation of nanovoids. Ultrafast lithium (de)intercalation leads to oxygen-distortion-dominated lattice displacement, transition metal ion dissolution and lithium site variation. These inhomogeneous and irreversible structural changes are responsible for the low initial Coulombic efficiency, and ongoing particle cracking and expansion in the subsequent cycles.

摘要

层状富锂过渡金属氧化物由于过渡金属阳离子和氧阴离子的氧化还原作用,是高能量密度锂电池很有前景的正极候选材料。然而,它们的实际应用受到容量逐渐衰减和电压下降的阻碍。尽管氧损失和相变被认为是主要因素,但结构恶化、化学重排、动力学和热力学效应仍不清楚。在这里,我们整合了从单个原子到二次颗粒的形态、结构和氧化态演变的分析。通过进行纳米尺度到微米尺度的表征,确定了与颗粒内非均相反应相关的不同结构变化途径。通过缓慢的电化学活化在整个颗粒中形成的高水平氧缺陷触发了渐进的相变和纳米空洞的形成。超快的锂嵌入/脱嵌导致以氧畸变为主的晶格位移、过渡金属离子溶解和锂位点变化。这些不均匀且不可逆的结构变化导致了低初始库仑效率,以及在随后的循环中持续的颗粒破裂和膨胀。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验