APHP, Mondor University Hospitals, DMU IMPACT Psychiatry and Addictology, UPEC, Créteil, France.
Neurospin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
Bipolar Disord. 2020 Jun;22(4):334-355. doi: 10.1111/bdi.12895. Epub 2020 Mar 20.
The existence of anatomofunctional brain abnormalities in bipolar disorder (BD) is now well established by magnetic resonance imaging (MRI) studies. To create diagnostic and prognostic tools, as well as identifying biologically valid subtypes of BD, research has recently turned towards the use of machine learning (ML) techniques. We assessed both supervised ML and unsupervised ML studies in BD to evaluate their robustness, reproducibility and the potential need for improvement.
We systematically searched for studies using ML algorithms based on MRI data of patients with BD until February 2019.
We identified 47 studies, 45 using supervised ML techniques and 2 including unsupervised ML analyses. Among supervised studies, 43 focused on diagnostic classification. The reported accuracies for classification of BD ranged between (a) 57% and 100%, for BD vs healthy controls; (b) 49.5% and 93.1% for BD vs patients with major depressive disorder; and (c) 50% and 96.2% for BD vs patients with schizophrenia. Reported accuracies for discriminating subjects genetically at risk for BD (either from control or from patients with BD) ranged between 64.3% and 88.93%.
Although there are strong methodological limitations in previous studies and an important need for replication in large multicentric samples, the conclusions of our review bring hope of future computer-aided diagnosis of BD and pave the way for other applications, such as treatment response prediction. To reinforce the reliability of future results we provide methodological suggestions for good practice in conducting and reporting MRI-based ML studies in BD.
磁共振成像(MRI)研究现已证实双相情感障碍(BD)存在解剖功能脑异常。为了创建诊断和预后工具,并确定 BD 的生物学有效亚型,研究最近转向使用机器学习(ML)技术。我们评估了 BD 中的有监督 ML 和无监督 ML 研究,以评估它们的稳健性、可重复性和潜在的改进需求。
我们系统地搜索了基于 MRI 数据的使用 ML 算法的研究,这些研究针对的是直到 2019 年 2 月的 BD 患者。
我们确定了 47 项研究,其中 45 项使用了有监督的 ML 技术,2 项包括无监督的 ML 分析。在有监督的研究中,43 项专注于诊断分类。BD 与健康对照组之间的分类准确性报告范围为(a)57%至 100%;BD 与重性抑郁障碍患者之间的准确性报告范围为(b)49.5%至 93.1%;BD 与精神分裂症患者之间的准确性报告范围为(c)50%至 96.2%。用于区分具有 BD 遗传风险的受试者(来自对照组或来自 BD 患者)的报告准确性范围为 64.3%至 88.93%。
尽管之前的研究存在很强的方法学限制,并且在大型多中心样本中需要进行复制,但我们的综述结论带来了未来 BD 计算机辅助诊断的希望,并为其他应用铺平了道路,例如治疗反应预测。为了增强未来结果的可靠性,我们提供了在 BD 中进行和报告基于 MRI 的 ML 研究的良好实践方法学建议。