Suppr超能文献

AQDS 和氧化还原活性天然有机质在厘米尺度上促进微生物三价铁矿物还原。

AQDS and Redox-Active NOM Enables Microbial Fe(III)-Mineral Reduction at cm-Scales.

机构信息

Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Hölderlinstrasse 12, D-72074 Tübingen, Germany.

Hydrogeology, Center for Applied Geosciences, University of Tübingen, Hölderlinstrasse 12, D-72074 Tübingen, Germany.

出版信息

Environ Sci Technol. 2020 Apr 7;54(7):4131-4139. doi: 10.1021/acs.est.9b07134. Epub 2020 Mar 11.

Abstract

Redox-active organic molecules such as anthraquinone-2,6-disulfonate (AQDS) and natural organic matter (NOM) can act as electron shuttles thus facilitating electron transfer from Fe(III)-reducing bacteria (FeRB) to terminal electron acceptors such as Fe(III) minerals. In this research, we examined the length scale over which this electron shuttling can occur. We present results from agar-solidified experimental incubations, containing either AQDS or NOM, where FeRB were physically separated from ferrihydrite or goethite by 2 cm. Iron speciation and concentration measurements coupled to a diffusion-reaction model highlighted clearly Fe(III) reduction in the presence of electron shuttles, independent of the type of FeRB. Based on our fitted model, the rate of ferrihydrite reduction increased from 0.07 to 0.19 μmol d with a 10-fold increase in the AQDS concentration, highlighting a dependence of the reduction rate on the electron-shuttle concentration. To capture the kinetics of Fe(II) production, the effective AQDS diffusion coefficient had to be increased by a factor of 9.4. Thus, we postulate that the 2 cm electron transfer was enabled by a combination of AQDS molecular diffusion and an electron hopping contribution from reduced to oxidized AQDS molecules. Our results demonstrate that AQDS and NOM can drive microbial Fe(III) reduction across 2 cm distances and shed light on the electron transfer process in natural anoxic environments.

摘要

氧化还原活性有机分子,如蒽醌-2,6-二磺酸钠(AQDS)和天然有机物(NOM),可以作为电子穿梭体,从而促进铁还原菌(FeRB)向末端电子受体(如三价铁矿物)的电子转移。在这项研究中,我们研究了这种电子穿梭作用发生的长度尺度。我们展示了含有 AQDS 或 NOM 的琼脂固化实验培养物的结果,其中 FeRB 通过 2 厘米与水铁矿或针铁矿物理分离。铁形态和浓度测量与扩散反应模型相结合,清楚地强调了电子穿梭作用存在时的三价铁还原,而与 FeRB 的类型无关。根据我们拟合的模型,在 AQDS 浓度增加 10 倍的情况下,水铁矿还原率从 0.07 增加到 0.19 μmol d,这突出了还原率对电子穿梭浓度的依赖性。为了捕捉 Fe(II)生成的动力学,必须将有效 AQDS 扩散系数增加 9.4 倍。因此,我们假设 2 厘米的电子转移是由 AQDS 分子扩散和还原态 AQDS 分子到氧化态 AQDS 分子的电子跳跃贡献的组合实现的。我们的结果表明,AQDS 和 NOM 可以驱动微生物三价铁还原跨越 2 厘米的距离,并揭示了自然缺氧环境中的电子转移过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验