Suppr超能文献

人工智能在儿科肿瘤诊断中的应用。

Artificial intelligence applications in pediatric oncology diagnosis.

作者信息

Yang Yuhan, Zhang Yimao, Li Yuan

机构信息

Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.

Laboratory of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.

出版信息

Explor Target Antitumor Ther. 2023;4(1):157-169. doi: 10.37349/etat.2023.00127. Epub 2023 Feb 28.

Abstract

Artificial intelligence (AI) algorithms have been applied in abundant medical tasks with high accuracy and efficiency. Physicians can improve their diagnostic efficiency with the assistance of AI techniques for improving the subsequent personalized treatment and surveillance. AI algorithms fundamentally capture data, identify underlying patterns, achieve preset endpoints, and provide decisions and predictions about real-world events with working principles of machine learning and deep learning. AI algorithms with sufficient graphic processing unit power have been demonstrated to provide timely diagnostic references based on preliminary training of large amounts of clinical and imaging data. The sample size issue is an inevitable challenge for pediatric oncology considering its low morbidity and individual heterogeneity. However, this problem may be solved in the near future considering the exponential advancements of AI algorithms technically to decrease the dependence of AI operation on the amount of data sets and the efficiency of computing power. For instance, it could be a feasible solution by shifting convolutional neural networks (CNNs) from adults and sharing CNN algorithms across multiple institutions besides original data. The present review provides important insights into emerging AI applications for the diagnosis of pediatric oncology by systematically overviewing of up-to-date literature.

摘要

人工智能(AI)算法已被应用于大量医学任务中,具有高精度和高效率。医生可以在AI技术的辅助下提高诊断效率,从而改善后续的个性化治疗和监测。AI算法从根本上捕获数据、识别潜在模式、实现预设终点,并利用机器学习和深度学习的工作原理对现实世界事件提供决策和预测。具有足够图形处理单元能力的AI算法已被证明能够基于大量临床和影像数据的初步训练提供及时的诊断参考。考虑到儿科肿瘤发病率低且个体差异大,样本量问题是儿科肿瘤学不可避免的挑战。然而,考虑到AI算法在技术上呈指数级进步,有望在不久的将来减少AI操作对数据集数量和计算能力效率的依赖,从而解决这一问题。例如,将卷积神经网络(CNN)从成人领域转移并在多个机构之间共享CNN算法(除原始数据外)可能是一个可行的解决方案。本综述通过系统综述最新文献,为儿科肿瘤学诊断中新兴的AI应用提供了重要见解。

相似文献

1
Artificial intelligence applications in pediatric oncology diagnosis.人工智能在儿科肿瘤诊断中的应用。
Explor Target Antitumor Ther. 2023;4(1):157-169. doi: 10.37349/etat.2023.00127. Epub 2023 Feb 28.
2
Artificial intelligence applications for pediatric oncology imaging.人工智能在儿科肿瘤成像中的应用。
Pediatr Radiol. 2019 Oct;49(11):1384-1390. doi: 10.1007/s00247-019-04360-1. Epub 2019 Oct 16.
3
Artificial intelligence for oral and maxillo-facial surgery: A narrative review.口腔颌面外科中的人工智能:一项叙述性综述。
J Stomatol Oral Maxillofac Surg. 2022 Jun;123(3):276-282. doi: 10.1016/j.jormas.2022.01.010. Epub 2022 Jan 25.
6
Artificial intelligence in medical imaging of the liver.人工智能在肝脏医学影像中的应用。
World J Gastroenterol. 2019 Feb 14;25(6):672-682. doi: 10.3748/wjg.v25.i6.672.
9
Artificial Intelligence in Oncological Hybrid Imaging.肿瘤混合成像中的人工智能
Rofo. 2023 Feb;195(2):105-114. doi: 10.1055/a-1909-7013. Epub 2022 Sep 28.

引用本文的文献

本文引用的文献

3
Biomedical Diagnosis of Leukemia Using a Deep Learner Classifier.使用深度学习分类器进行白血病的生物医学诊断。
Comput Intell Neurosci. 2022 Aug 29;2022:1568375. doi: 10.1155/2022/1568375. eCollection 2022.
10
Machine learning for rhabdomyosarcoma histopathology.机器学习在横纹肌肉瘤组织病理学中的应用。
Mod Pathol. 2022 Sep;35(9):1193-1203. doi: 10.1038/s41379-022-01075-x. Epub 2022 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验