Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21205, USA.
Tissue Eng Regen Med. 2020 Apr;17(2):223-235. doi: 10.1007/s13770-020-00240-0. Epub 2020 Feb 29.
Human testicular cells are greatly valuable to the research community as tools for studying testicular physiology and the effects of environmental pollutants. Because adult testicular cells have a limited self-organization capacity and life span, we investigated whether human pluripotent stem cells (hPSCs) can be used together with testicular cells to move a step closer toward making an optimal model of the human testis.
We used in vitro culture of donor testicular cells under serum-containing and chemically defined conditions. CRISPR-Cas9 technology was applied to introduce fluorescent transgenes (mCherry2 and EGFP) into hPSCs and testicular cells. hPSC-derived spheroids were co-cultured with human testicular cells in mini-spin bioreactors.
Traditional cell culture conditions used for maintenance of testicular somatic cells generally contain serum and pose limitations on evaluating the role of active molecules on cell functions. We established that chemically defined culture conditions can be used to maintain testicular cells without the loss of proliferative activity. These cultures demonstrate marker expression which is characteristic of common testicular cell types: Sertoli, Leydig, endothelial, myoid cells, and macrophages. In order to model testicular physiology, it is important to be able to perform live cell microscopy. Thus, we generated fluorescent protein-expressing human testicular cells and hPSCs and demonstrated that these cell types can be successfully co-cultured for prolonged periods of time in a three-dimensional microenvironment.
Our research extends the possible applications of human testis-derived somatic cells and shows that they can be used together with hPSCs for further studies of human male reproductive biology.
人类睾丸细胞对于研究界来说具有巨大的价值,可作为研究睾丸生理学和环境污染物影响的工具。由于成年睾丸细胞的自我组织能力和寿命有限,我们研究了人类多能干细胞(hPSC)是否可以与睾丸细胞一起使用,以更接近构建人类睾丸的最佳模型。
我们在含有血清和化学定义条件下对供体睾丸细胞进行体外培养。CRISPR-Cas9 技术被应用于将荧光转基因(mCherry2 和 EGFP)引入 hPSC 和睾丸细胞。hPSC 衍生的球体在迷你旋转生物反应器中与人类睾丸细胞共培养。
用于维持睾丸体细胞的传统细胞培养条件通常含有血清,这对评估活性分子对细胞功能的作用有限制。我们建立了可以使用化学定义的培养条件来维持睾丸细胞,而不会失去增殖活性。这些培养物表现出典型的睾丸细胞类型的标记物表达:支持细胞、间质细胞、内皮细胞、肌样细胞和巨噬细胞。为了模拟睾丸生理学,能够进行活细胞显微镜检查非常重要。因此,我们生成了荧光蛋白表达的人类睾丸细胞和 hPSC,并证明这些细胞类型可以在三维微环境中成功地进行长时间共培养。
我们的研究扩展了人类睾丸源性体细胞的可能应用,并表明它们可以与 hPSC 一起用于进一步研究人类男性生殖生物学。