Suppr超能文献

将机器学习与多晶材料的先进处理和表征相结合:方法综述及在铁基超导体中的应用

Integrating machine learning with advanced processing and characterization for polycrystalline materials: a methodology review and application to iron-based superconductors.

作者信息

Yamamoto Akiyasu, Yamanaka Akinori, Iida Kazumasa, Shimada Yusuke, Hata Satoshi

机构信息

Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo, Japan.

JST-CREST, Saitama, Japan.

出版信息

Sci Technol Adv Mater. 2024 Dec 16;26(1):2436347. doi: 10.1080/14686996.2024.2436347. eCollection 2025.

Abstract

In this review, we present a new set of machine learning-based materials research methodologies for polycrystalline materials developed through the Core Research for Evolutionary Science and Technology project of the Japan Science and Technology Agency. We focus on the constituents of polycrystalline materials (i.e. grains, grain boundaries [GBs], and microstructures) and summarize their various aspects (experimental synthesis, artificial single GBs, multiscale experimental data acquisition via electron microscopy, formation process modeling, property description modeling, 3D reconstruction, and data-driven design methods). Specifically, we discuss a mechanochemical process involving high-energy milling, in situ observation of microstructural formation using 3D scanning transmission electron microscopy, phase-field modeling coupled with Bayesian data assimilation, nano-orientation analysis via scanning precession electron diffraction, semantic segmentation using neural network models, and the Bayesian-optimization-based process design using BOXVIA software. As a proof of concept, a researcher- and data-driven process design methodology is applied to a polycrystalline iron-based superconductor to evaluate its bulk magnet properties. Finally, future challenges and prospects for data-driven material development and iron-based superconductors are discussed.

摘要

在本综述中,我们介绍了一套新的基于机器学习的多晶材料研究方法,这些方法是通过日本科学技术振兴机构的进化科学与技术核心研究项目开发的。我们关注多晶材料的组成部分(即晶粒、晶界[GBs]和微观结构),并总结了它们的各个方面(实验合成、人工单晶界、通过电子显微镜进行多尺度实验数据采集、形成过程建模、性能描述建模、三维重建以及数据驱动设计方法)。具体而言,我们讨论了涉及高能球磨的机械化学过程、使用三维扫描透射电子显微镜对微观结构形成进行原位观察、结合贝叶斯数据同化的相场建模、通过扫描进动电子衍射进行纳米取向分析、使用神经网络模型进行语义分割以及使用BOXVIA软件进行基于贝叶斯优化的过程设计。作为概念验证,一种由研究人员和数据驱动的过程设计方法被应用于多晶铁基超导体,以评估其体磁性能。最后,讨论了数据驱动材料开发和铁基超导体未来面临的挑战和前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfb1/11753020/65f7ee8f409d/TSTA_A_2436347_F0002_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验