Suppr超能文献

通过域变换的层次分解进行深度学习断层重建。

Deep learning tomographic reconstruction through hierarchical decomposition of domain transforms.

作者信息

Fu Lin, De Man Bruno

机构信息

GE Research, NY 12309, Niskayuna, USA.

出版信息

Vis Comput Ind Biomed Art. 2022 Dec 9;5(1):30. doi: 10.1186/s42492-022-00127-y.

Abstract

Deep learning (DL) has shown unprecedented performance for many image analysis and image enhancement tasks. Yet, solving large-scale inverse problems like tomographic reconstruction remains challenging for DL. These problems involve non-local and space-variant integral transforms between the input and output domains, for which no efficient neural network models are readily available. A prior attempt to solve tomographic reconstruction problems with supervised learning relied on a brute-force fully connected network and only allowed reconstruction with a 128 system matrix size. This cannot practically scale to realistic data sizes such as 512 and 512 for three-dimensional datasets. Here we present a novel framework to solve such problems with DL by casting the original problem as a continuum of intermediate representations between the input and output domains. The original problem is broken down into a sequence of simpler transformations that can be well mapped onto an efficient hierarchical network architecture, with exponentially fewer parameters than a fully connected network would need. We applied the approach to computed tomography (CT) image reconstruction for a 512 system matrix size. This work introduces a new kind of data-driven DL solver for full-size CT reconstruction without relying on the structure of direct (analytical) or iterative (numerical) inversion techniques. This work presents a feasibility demonstration of full-scale learnt reconstruction, whereas more developments will be needed to demonstrate superiority relative to traditional reconstruction approaches. The proposed approach is also extendable to other imaging problems such as emission and magnetic resonance reconstruction. More broadly, hierarchical DL opens the door to a new class of solvers for general inverse problems, which could potentially lead to improved signal-to-noise ratio, spatial resolution and computational efficiency in various areas.

摘要

深度学习(DL)在许多图像分析和图像增强任务中展现出了前所未有的性能。然而,对于像断层扫描重建这样的大规模逆问题,深度学习的求解仍然具有挑战性。这些问题涉及输入和输出域之间的非局部和空间可变积分变换,目前尚无有效的神经网络模型可直接用于此类问题。之前尝试用监督学习解决断层扫描重建问题时,依赖的是蛮力全连接网络,且仅允许使用128的系统矩阵大小进行重建。这在实际中无法扩展到如三维数据集512×512这样的实际数据大小。在此,我们提出了一种新颖的框架,通过将原始问题转化为输入和输出域之间的一系列中间表示的连续统,用深度学习来解决此类问题。原始问题被分解为一系列更简单的变换,这些变换可以很好地映射到一个高效的分层网络架构上,其参数数量比全连接网络所需的参数数量呈指数级减少。我们将该方法应用于512系统矩阵大小的计算机断层扫描(CT)图像重建。这项工作引入了一种新型的数据驱动深度学习求解器,用于全尺寸CT重建,而无需依赖直接(解析)或迭代(数值)反演技术的结构。这项工作展示了全尺寸学习重建的可行性,不过要证明相对于传统重建方法的优越性,还需要更多的进展。所提出的方法也可扩展到其他成像问题,如发射和磁共振重建。更广泛地说,分层深度学习为一类新的通用逆问题求解器打开了大门,这有可能在各个领域提高信噪比、空间分辨率和计算效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f119/9733764/bfe715a15d51/42492_2022_127_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验