IEEE Trans Med Imaging. 2023 Nov;42(11):3129-3139. doi: 10.1109/TMI.2021.3139533. Epub 2023 Oct 27.
In our earlier study, we proposed a regional Markov random field type tissue-specific texture prior from previous full-dose computed tomography (FdCT) scan for current low-dose CT (LdCT) imaging, which showed clinical benefits through task-based evaluation. Nevertheless, two assumptions were made for early study. One assumption is that the center pixel has a linear relationship with its nearby neighbors and the other is previous FdCT scans of the same subject are available. To eliminate the two assumptions, we proposed a database assisted end-to-end LdCT reconstruction framework which includes a deep learning texture prior model and a multi-modality feature based candidate selection model. A convolutional neural network-based texture prior is proposed to eliminate the linear relationship assumption. And for scenarios in which the concerned subject has no previous FdCT scans, we propose to select one proper prior candidate from the FdCT database using multi-modality features. Features from three modalities are used including the subjects' physiological factors, the CT scan protocol, and a novel feature named Lung Mark which is deliberately proposed to reflect the z-axial property of human anatomy. Moreover, a majority vote strategy is designed to overcome the noise effect from LdCT scans. Experimental results showed the effectiveness of Lung Mark. The selection model has accuracy of 84% testing on 1,470 images from 49 subjects. The learned texture prior from FdCT database provided reconstruction comparable to the subjects having corresponding FdCT. This study demonstrated the feasibility of bringing clinically relevant textures from available FdCT database to perform Bayesian reconstruction of any current LdCT scan.
在我们之前的研究中,我们提出了一种基于区域马尔可夫随机场的组织特异性纹理先验模型,该模型来自之前的全剂量 CT(FdCT)扫描,可用于当前的低剂量 CT(LdCT)成像,通过基于任务的评估显示出了临床益处。然而,早期研究有两个假设。一个假设是中心像素与其附近的像素存在线性关系,另一个假设是可以获得相同患者的先前 FdCT 扫描。为了消除这两个假设,我们提出了一种基于数据库的端到端 LdCT 重建框架,该框架包括一个深度学习纹理先验模型和一个基于多模态特征的候选选择模型。我们提出了一个基于卷积神经网络的纹理先验模型来消除线性关系假设。对于患者没有先前 FdCT 扫描的情况,我们提出使用多模态特征从 FdCT 数据库中选择一个合适的先验候选。使用了三种模态的特征,包括患者的生理因素、CT 扫描协议,以及一个新的名为 Lung Mark 的特征,该特征是专门提出的,用于反映人体解剖结构的 Z 轴属性。此外,还设计了多数投票策略来克服 LdCT 扫描的噪声影响。实验结果表明了 Lung Mark 的有效性。在来自 49 名患者的 1470 张图像的测试中,选择模型的准确率为 84%。从 FdCT 数据库中学习到的纹理先验为任何当前的 LdCT 扫描提供了与具有对应 FdCT 扫描的患者相当的重建。这项研究证明了从可用的 FdCT 数据库中引入临床相关纹理来执行任何当前 LdCT 扫描的贝叶斯重建的可行性。