School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
ACS Nano. 2020 Mar 24;14(3):3640-3650. doi: 10.1021/acsnano.0c00118. Epub 2020 Mar 5.
The shape of a drug delivery system impacts its behavior such as circulation time, accumulation, and penetration. Considering the advantages of functional dyes in bioapplications, we synthesize a class of nanoaggregates based on BF-azadipyrromethene (aza-BODIPY) dyes, which can realize long blood circulation and deep tumor penetration simultaneously through morphological transformation modulated by a near-infrared (NIR) laser. First, when the temperature increases, the wormlike nanofibers of the aza-BODIPY-1 aggregate, possessing a long blood circulation time, can be transformed into spherical nanoparticles, which are conducive to increasing the penetration in the solid tumor. Second, without any postmodification, the nanofibers exhibit an outstandingly narrow absorption band in the NIR spectral range, so that they possess ideal photothermal properties. Through 655 nm laser irradiation, the intrinsic photothermal effect causes a local temperature increase to ∼48 °C, realizing the transformation of 1-NFs to 1-NPs. Third, the morphological transformation is real-time detected by photoacoustic (PA) imaging. By monitoring the change of the PA signal at a specific wavelength, the deformation process of nanomaterials can be traced. Consequently, the morphology transformation of aza-BODIPY-based nanomaterials can simultaneously realize long blood circulation and deep penetration, resulting in the enhanced antitumor outcome.
给药系统的形状会影响其行为,如循环时间、积累和渗透。考虑到功能染料在生物应用中的优势,我们合成了一类基于 BF-偶氮二吡咯甲川(aza-BODIPY)染料的纳米聚集体,通过近红外(NIR)激光调制的形态转变,同时实现长循环和深肿瘤渗透。首先,当温度升高时,具有长循环时间的 aza-BODIPY-1 聚集体的类蠕虫纳米纤维可以转变为球形纳米颗粒,有利于增加在实体瘤中的渗透。其次,无需任何后修饰,纳米纤维在近红外光谱范围内具有非常窄的吸收带,因此具有理想的光热性能。通过 655nm 激光照射,固有光热效应导致局部温度升高至约 48°C,实现了 1-NFs 到 1-NPs 的转变。第三,通过光声(PA)成像实时检测形态转变。通过监测特定波长的 PA 信号变化,可以跟踪纳米材料的变形过程。因此,基于 aza-BODIPY 的纳米材料的形态转变可以同时实现长循环和深渗透,从而增强抗肿瘤效果。
Eur J Med Chem. 2018-10-19
J Colloid Interface Sci. 2018-10-19
Chem Commun (Camb). 2019-9-10
Chem Commun (Camb). 2018-11-27
Acta Pharm Sin B. 2025-2
Mater Today Bio. 2025-2-15
Chem Rev. 2024-5-8
Int J Mol Sci. 2022-12-10
Acta Pharm Sin B. 2022-11
J Nanobiotechnology. 2022-6-3
J Nanobiotechnology. 2022-2-17