文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过纳米药物增强实体瘤中的药物渗透:评估模型、策略与展望。

Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives.

作者信息

Shen Xiaoding, Pan Dayi, Gong Qiyong, Gu Zhongwei, Luo Kui

机构信息

Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China.

Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.

出版信息

Bioact Mater. 2023 Oct 26;32:445-472. doi: 10.1016/j.bioactmat.2023.10.017. eCollection 2024 Feb.


DOI:10.1016/j.bioactmat.2023.10.017
PMID:37965242
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10641097/
Abstract

Effective tumor treatment depends on optimizing drug penetration and accumulation in tumor tissue while minimizing systemic toxicity. Nanomedicine has emerged as a key solution that addresses the rapid clearance of free drugs, but achieving deep drug penetration into solid tumors remains elusive. This review discusses various strategies to enhance drug penetration, including manipulation of the tumor microenvironment, exploitation of both external and internal stimuli, pioneering nanocarrier surface engineering, and development of innovative tactics for active tumor penetration. One outstanding strategy is organelle-affinitive transfer, which exploits the unique properties of specific tumor cell organelles and heralds a potentially transformative approach to active transcellular transfer for deep tumor penetration. Rigorous models are essential to evaluate the efficacy of these strategies. The patient-derived xenograft (PDX) model is gaining traction as a bridge between laboratory discovery and clinical application. However, the journey from bench to bedside for nanomedicines is fraught with challenges. Future efforts should prioritize deepening our understanding of nanoparticle-tumor interactions, re-evaluating the EPR effect, and exploring novel nanoparticle transport mechanisms.

摘要

有效的肿瘤治疗取决于优化药物在肿瘤组织中的渗透和积累,同时将全身毒性降至最低。纳米医学已成为解决游离药物快速清除问题的关键解决方案,但实现药物深入实体瘤的渗透仍然难以捉摸。本文综述了多种增强药物渗透的策略,包括对肿瘤微环境的调控、利用外部和内部刺激、开创性的纳米载体表面工程以及开发主动肿瘤渗透的创新策略。一种突出的策略是细胞器亲和性转运,它利用特定肿瘤细胞细胞器的独特性质,预示着一种潜在的变革性方法,用于主动跨细胞转运以实现肿瘤深部渗透。严格的模型对于评估这些策略的有效性至关重要。患者来源的异种移植(PDX)模型作为实验室发现与临床应用之间的桥梁正越来越受到关注。然而,纳米药物从实验室到临床的旅程充满挑战。未来的工作应优先加深我们对纳米颗粒-肿瘤相互作用的理解,重新评估EPR效应,并探索新型纳米颗粒转运机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/21dda971e6ef/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/ecaa4a652b8d/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/d1f6b0888b7a/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/14c488fdf7d0/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/33e09c19e0b5/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/0563f0fb5ec3/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/3ddeb1068c15/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/98850eb4c000/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/e591650a5c11/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/a8eea4122a30/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/ab439c95d7db/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/e2b7c0a6221f/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/a5a9bf824a38/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/4ac8f1a8aef8/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/d1a65af15adf/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/21dda971e6ef/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/ecaa4a652b8d/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/d1f6b0888b7a/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/14c488fdf7d0/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/33e09c19e0b5/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/0563f0fb5ec3/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/3ddeb1068c15/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/98850eb4c000/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/e591650a5c11/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/a8eea4122a30/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/ab439c95d7db/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/e2b7c0a6221f/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/a5a9bf824a38/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/4ac8f1a8aef8/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/d1a65af15adf/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35c/10641097/21dda971e6ef/gr14.jpg

相似文献

[1]
Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives.

Bioact Mater. 2023-10-26

[2]
Strategies to improve tumor penetration of nanomedicines through nanoparticle design.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018-4-16

[3]
Nanomedicine Penetration to Tumor: Challenges, and Advanced Strategies to Tackle This Issue.

Cancers (Basel). 2022-6-13

[4]
Enhancing Tumor Penetration of Nanomedicines.

Biomacromolecules. 2017-5-8

[5]
What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right.

ACS Nano. 2020-10-27

[6]
Tumor-Targeted Nanomedicine for Immunotherapy.

Acc Chem Res. 2020-12-15

[7]
Sequential Intra-Intercellular Delivery of Nanomedicine for Deep Drug-Resistant Solid Tumor Penetration.

ACS Appl Mater Interfaces. 2020-2-17

[8]
Nanomedicines for cancer therapy: current status, challenges and future prospects.

Ther Deliv. 2019-2

[9]
Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation.

Biomaterials. 2021-8

[10]
High-resolution 3D visualization of nanomedicine distribution in tumors.

Theranostics. 2020

引用本文的文献

[1]
Construction of a whole-brain panorama for glioma vasculature reveals tumor heterogeneity and blood-brain barrier disruption.

Sci Adv. 2025-7-25

[2]
Harnessing 3D cell models and high-resolution imaging to unveil the mechanisms of nanoparticle-mediated drug delivery.

Front Bioeng Biotechnol. 2025-7-7

[3]
Biomaterials nanoplatform-based tumor vaccines for immunotherapy.

Bioact Mater. 2025-6-30

[4]
Light-driven secondary structural remodeling in biomimetic nanosystem to enhance tumor chemo-phototherapy.

Mater Today Bio. 2025-6-6

[5]
CeO nanozyme-embedded thermal-deformative polymer for site-specific chemotherapy via HIF-1α-P-gp/lipolysis axis reversal.

Asian J Pharm Sci. 2025-6

[6]
Nanomedicine in Cancer Therapeutics: Current Perspectives from Bench to Bedside.

Mol Cancer. 2025-6-9

[7]
Nano particle loaded EZH2 inhibitors: Increased efficiency and reduced toxicity for malignant solid tumors.

J Transl Int Med. 2025-5-8

[8]
Bupivacaine Nanoparticles Inhibit Triple-Negative Breast Tumor Growth by Suppressing the Noradrenergic Nerves in Tumor Microenvironment.

Int J Nanomedicine. 2025-5-12

[9]
Innovative nanoparticle strategies for treating oral cancers.

Med Oncol. 2025-4-26

[10]
Nanomaterial-Based Molecular Imaging in Cancer: Advances in Simulation and AI Integration.

Biomolecules. 2025-3-20

本文引用的文献

[1]
Stimuli-activatable nanomedicine meets cancer theranostics.

Theranostics. 2023

[2]
Lipid carriers for mRNA delivery.

Acta Pharm Sin B. 2023-10

[3]
Breaking through the basement membrane barrier to improve nanotherapeutic delivery to tumours.

Nat Nanotechnol. 2024-1

[4]
Extending the In Vivo Residence Time of Macrophage Membrane-Coated Nanoparticles through Genetic Modification.

Small. 2023-12

[5]
Nanomedicine in cancer therapy.

Signal Transduct Target Ther. 2023-8-7

[6]
The response and resistance to drugs in ovarian cancer cell lines in 2D monolayers and 3D spheroids.

Biomed Pharmacother. 2023-9

[7]
MnO Decorated Metal-Organic Framework-Based Hydrogel Relieving Tumor Hypoxia for Enhanced Photodynamic Therapy.

Macromol Rapid Commun. 2023-10

[8]
Enzyme-triggered transcytosis of drug carrier system for deep penetration into hepatoma tumors.

Biomaterials. 2023-10

[9]
Patient-derived xenograft models of ALK+ ALCL reveal preclinical promise for therapy with brigatinib.

Br J Haematol. 2023-9

[10]
RGD-directed 24 nm micellar docetaxel enables elevated tumor-liver ratio, deep tumor penetration and potent suppression of solid tumors.

J Control Release. 2023-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索