Suppr超能文献

开发并验证了一种简化评分系统,用于预测体重在 2000 克及以下的新生儿(NMR-2000)的新生儿死亡率风险:基于英国和冈比亚数据的分析。

Development and validation of a simplified score to predict neonatal mortality risk among neonates weighing 2000 g or less (NMR-2000): an analysis using data from the UK and The Gambia.

机构信息

Department of Paediatrics, University of California San Francisco, San Francisco, CA, USA; Maternal, Adolescent, Reproductive, and Child Health Centre, London School of Hygiene and Tropical Medicine, London, UK; Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK.

Maternal, Adolescent, Reproductive, and Child Health Centre, London School of Hygiene and Tropical Medicine, London, UK; UK Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia.

出版信息

Lancet Child Adolesc Health. 2020 Apr;4(4):299-311. doi: 10.1016/S2352-4642(20)30021-3. Epub 2020 Feb 28.

Abstract

BACKGROUND

78% of neonatal deaths occur in sub-Saharan Africa and southern Asia, among which, more than 80% are in low birthweight babies. Existing neonatal mortality risk scores have primarily been developed for high-resource settings. The aim of this study was to develop and validate a score that is practicable for low-income and middle-income countries to predict in-hospital mortality among neonates born weighing 2000 g or less using datasets from the UK and The Gambia.

METHODS

This analysis used retrospective data held in the UK National Neonatal Research Database from 187 neonatal units, and data from the Edward Francis Small Teaching Hospital (EFSTH), Banjul, The Gambia. In the UK dataset, neonates were excluded if birthweight was more than 2000 g; if the neonate was admitted aged more than 6 h or following discharge; if the neonate was stillborn; if the neonate died in delivery room; or if they were moribund on admission. The Gambian dataset included all neonates weighing less than 2000 g who were admitted between May 1, 2018, and Sept 30, 2019, who were screened for but not enrolled in the Early Kangaroo Mother Care Trial. 18 studies were reviewed to generate a list of 84 potential parameters. We derived a model to score in-hospital neonatal mortality risk using data from 55 029 admissions to a random sample of neonatal units in England and Wales from Jan 1, 2010, to Dec 31, 2016. All candidate variables were included in a complete multivariable model, which was progressively simplified using reverse stepwise selection. We validated the new score (NMR-2000) on 40 329 admissions to the remaining units between the same dates and 14 818 admissions to all units from Jan 1, to Dec 31, 2017. We also validated the score on 550 neonates admitted to the EFSTH in The Gambia.

FINDINGS

18 candidate variables were selected for inclusion in the modelling process. The final model included three parameters: birthweight, admission oxygen saturation, and highest level of respiratory support within 24 h of birth. NMR-2000 had very good discrimination and goodness-of-fit across the UK samples, with a c-index of 0·8859-0·8930 and a Brier score of 0·0232-0·0271. Among Gambian neonates, the model had a c-index of 0·8170 and a Brier score of 0·1688. Predictive ability of the simplified integer score was similar to the model using regression coefficients, with c-indices of 0·8903 in the UK full validation sample and 0·8082 in the Gambian validation sample.

INTERPRETATION

NMR-2000 is a validated mortality risk score for hospitalised neonates weighing 2000 g or less in settings where pulse oximetry is available. The score is accurate and simplified for bedside use. NMR-2000 requires further validation using a larger dataset from low-income and middle-income countries but has the potential to improve individual and population-level neonatal care resource allocation.

FUNDING

Bill & Melinda Gates Foundation; Eunice Kennedy Shriver National Institute of Child Health & Human Development; Wellcome Trust; and Joint Global Health Trials scheme of Department of Health and Social Care, Department for International Development, Medical Research Council, and Wellcome Trust.

摘要

背景

78%的新生儿死亡发生在撒哈拉以南非洲和南亚地区,其中,超过 80%的新生儿体重不足。现有的新生儿死亡率风险评分主要是为高资源环境制定的。本研究旨在开发和验证一种评分系统,该系统适用于低收入和中等收入国家,以预测在英国和冈比亚的数据集基础上,出生体重为 2000 克或以下的新生儿的院内死亡率。

方法

本分析使用了英国国家新生儿研究数据库中 187 个新生儿病房的回顾性数据,以及冈比亚爱德华弗朗西斯小教学医院(EFSTH)的数据。在英国数据集,排除出生体重超过 2000 克的新生儿;如果新生儿在入院后 6 小时以上或出院后入院;如果新生儿是死产;如果新生儿在分娩室死亡;或者入院时已经濒死。冈比亚数据集包括 2018 年 5 月 1 日至 2019 年 9 月 30 日期间入住的所有体重不足 2000 克的新生儿,这些新生儿接受了早期袋鼠式母亲护理试验的筛查,但未被纳入。共回顾了 18 项研究,以生成一份包含 84 个潜在参数的清单。我们使用 2010 年 1 月 1 日至 2016 年 12 月 31 日期间英格兰和威尔士的随机新生儿病房 55029 例入院的数据,开发了一种评分模型,以预测院内新生儿死亡风险。所有候选变量都包含在完整的多变量模型中,该模型使用反向逐步选择法逐步简化。我们在同一日期对剩余的新生儿病房的 40329 例入院和 2017 年 1 月 1 日至 12 月 31 日所有病房的 14818 例入院对新评分(NMR-2000)进行了验证。我们还在冈比亚的 EFSTH 对 550 名新生儿进行了评分验证。

结果

选择了 18 个候选变量纳入建模过程。最终模型包括三个参数:出生体重、入院时的血氧饱和度和出生后 24 小时内最高的呼吸支持水平。NMR-2000 在英国样本中具有很好的区分度和拟合优度,C 指数为 0.8859-0.8930,Brier 分数为 0.0232-0.0271。在冈比亚新生儿中,该模型的 C 指数为 0.8170,Brier 分数为 0.1688。使用回归系数的简化整数评分的预测能力与模型相似,在英国全验证样本中的 C 指数为 0.8903,在冈比亚验证样本中的 C 指数为 0.8082。

解释

NMR-2000 是一种针对在有脉搏血氧饱和度监测条件下住院的体重不足 2000 克的新生儿的死亡率风险评分。该评分准确且简化,适用于床边使用。NMR-2000 需要使用来自低收入和中等收入国家的更大数据集进行进一步验证,但具有改善个体和人群层面新生儿护理资源分配的潜力。

资助

比尔及梅琳达·盖茨基金会;美国国立卫生研究院儿童健康与人类发育部;威康信托基金会;以及英国卫生部、国际发展部、医学研究理事会和威康信托基金会联合全球卫生试验计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f000/7083247/7f5364ef80f6/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验