Suppr超能文献

基于戈达大学综合专科医院接受败血症治疗的早产儿的新生儿死亡率预测的列线图:风险预测模型的开发和验证。

Nomogram to predict risk of neonatal mortality among preterm neonates admitted with sepsis at University of Gondar Comprehensive Specialized Hospital: risk prediction model development and validation.

机构信息

Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.

School of Nursing, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.

出版信息

BMC Pregnancy Childbirth. 2024 Feb 15;24(1):139. doi: 10.1186/s12884-024-06306-4.

Abstract

BACKGROUND

Mortality in premature neonates is a global public health problem. In developing countries, nearly 50% of preterm births ends with death. Sepsis is one of the major causes of death in preterm neonates. Risk prediction model for mortality in preterm septic neonates helps for directing the decision making process made by clinicians.

OBJECTIVE

We aimed to develop and validate nomogram for the prediction of neonatal mortality. Nomograms are tools which assist the clinical decision making process through early estimation of risks prompting early interventions.

METHODS

A three year retrospective follow up study was conducted at University of Gondar Comprehensive Specialized Hospital and a total of 603 preterm neonates with sepsis were included. Data was collected using KoboCollect and analyzed using STATA version 16 and R version 4.2.1. Lasso regression was used to select the most potent predictors and to minimize the problem of overfitting. Nomogram was developed using multivariable binary logistic regression analysis. Model performance was evaluated using discrimination and calibration. Internal model validation was done using bootstrapping. Net benefit of the nomogram was assessed through decision curve analysis (DCA) to assess the clinical relevance of the model.

RESULT

The nomogram was developed using nine predictors: gestational age, maternal history of premature rupture of membrane, hypoglycemia, respiratory distress syndrome, perinatal asphyxia, necrotizing enterocolitis, total bilirubin, platelet count and kangaroo-mother care. The model had discriminatory power of 96.7% (95% CI: 95.6, 97.9) and P-value of 0.165 in the calibration test before and after internal validation with brier score of 0.07. Based on the net benefit analysis the nomogram was found better than treat all and treat none conditions.

CONCLUSION

The developed nomogram can be used for individualized mortality risk prediction with excellent performance, better net benefit and have been found to be useful in clinical practice with contribution in preterm neonatal mortality reduction by giving better emphasis for those at high risk.

摘要

背景

早产儿死亡率是一个全球性的公共卫生问题。在发展中国家,近 50%的早产儿死亡。败血症是早产儿死亡的主要原因之一。预测早产儿败血症死亡率的风险预测模型有助于指导临床医生的决策过程。

目的

我们旨在开发和验证用于预测新生儿死亡率的列线图。列线图是一种工具,通过早期估计风险,提示早期干预,协助临床决策过程。

方法

在贡德尔大学综合专科医院进行了一项为期三年的回顾性随访研究,共纳入 603 例患有败血症的早产儿。使用 KoboCollect 收集数据,并使用 STATA 版本 16 和 R 版本 4.2.1 进行分析。使用套索回归选择最有力的预测因子,并最小化过度拟合问题。使用多变量二项逻辑回归分析开发列线图。使用判别和校准评估模型性能。使用 bootstrap 进行内部模型验证。通过决策曲线分析(DCA)评估列线图的净收益,以评估模型的临床相关性。

结果

该列线图使用 9 个预测因子开发:胎龄、胎膜早破史、低血糖、呼吸窘迫综合征、围产期窒息、坏死性小肠结肠炎、总胆红素、血小板计数和袋鼠式母亲护理。该模型在内部验证前后的判别能力为 96.7%(95%CI:95.6,97.9),校准检验的 P 值为 0.165,Brier 得分为 0.07。基于净效益分析,该列线图优于“治疗所有”和“不治疗所有”的情况。

结论

该列线图可用于个体化死亡率风险预测,具有出色的性能、更好的净效益,并且在临床实践中发现是有用的,通过对高风险患者给予更多关注,有助于降低早产儿死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51ac/10868119/78d5ee751495/12884_2024_6306_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验