Suppr超能文献

评估全直肠新辅助治疗局部晚期直肠癌的内镜反应:一种高准确度卷积神经网络的建立和验证。

Assessing Endoscopic Response in Locally Advanced Rectal Cancer Treated with Total Neoadjuvant Therapy: Development and Validation of a Highly Accurate Convolutional Neural Network.

机构信息

Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA.

出版信息

Ann Surg Oncol. 2024 Oct;31(10):6443-6451. doi: 10.1245/s10434-024-15311-y. Epub 2024 May 3.

Abstract

BACKGROUND

Rectal tumors display varying degrees of response to total neoadjuvant therapy (TNT). We evaluated the performance of a convolutional neural network (CNN) in interpreting endoscopic images of either a non-complete response to TNT or local regrowth during watch-and-wait surveillance.

METHODS

Endoscopic images from stage II/III rectal cancers treated with TNT from 2012 to 2020 at a single institution were retrospectively reviewed. Images were labelled as Tumor or No Tumor based on endoscopy timing (before, during, or after treatment) and the tumor's endoluminal response. A CNN was trained using ResNet-50 architecture. The area under the curve (AUC) was analyzed during training and for two test sets. The main test set included images of tumors treated with TNT. The other contained images of local regrowth. The model's performance was compared to sixteen surgeons and surgical trainees who evaluated 119 images for evidence of tumor. Fleiss' kappa was calculated by respondent experience level.

RESULTS

A total of 2717 images from 288 patients were included; 1407 (51.8%) contained tumor. The AUC was 0.99, 0.98, and 0.92 for training, main test, and local regrowth test sets. The model performed on par with surgeons of all experience levels for the main test set. Interobserver agreement was good ( = 0.71-0.81). All groups outperformed the model in identifying tumor from images of local regrowth. Interobserver agreement was fair to moderate ( = 0.24-0.52).

CONCLUSIONS

A highly accurate CNN matched the performance of colorectal surgeons in identifying a noncomplete response to TNT. However, the model demonstrated suboptimal accuracy when analyzing images of local regrowth.

摘要

背景

直肠肿瘤对新辅助全直肠系膜切除术(TNT)的反应程度不一。我们评估了卷积神经网络(CNN)在解释 TNT 治疗后非完全缓解或观察等待期间局部复发的内镜图像的性能。

方法

回顾性分析了 2012 年至 2020 年在一家机构接受 TNT 治疗的 II/III 期直肠肿瘤的内镜图像。根据内镜时机(治疗前、治疗中和治疗后)和肿瘤腔内反应将图像标记为肿瘤或无肿瘤。使用 ResNet-50 架构对 CNN 进行训练。在训练过程中和两个测试集中分析曲线下面积(AUC)。主测试集包括接受 TNT 治疗的肿瘤图像。另一个包含局部复发的图像。该模型的性能与 16 名外科医生和外科受训人员进行了比较,他们评估了 119 张图像以确定肿瘤的证据。根据受访者的经验水平计算 Fleiss kappa。

结果

共纳入 288 例患者的 2717 张图像;1407 张(51.8%)包含肿瘤。AUC 分别为 0.99、0.98 和 0.92,用于训练、主测试和局部再生测试集。对于主测试集,该模型的表现与所有经验水平的外科医生相当。观察者间一致性良好( = 0.71-0.81)。所有组在识别局部复发图像中的肿瘤方面均优于模型。观察者间一致性为中等至适度( = 0.24-0.52)。

结论

高度准确的 CNN 与结直肠外科医生识别 TNT 非完全缓解的表现相当。然而,当分析局部复发的图像时,该模型的准确性较差。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验