Suppr超能文献

工具验证和比较,用于选择个体进行 Barrett 食管和早期肿瘤筛查。

Validation and Comparison of Tools for Selecting Individuals to Screen for Barrett's Esophagus and Early Neoplasia.

机构信息

Ann Arbor Veterans Affairs Medical Center, Ann Arbor, Michigan; Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.

Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan.

出版信息

Gastroenterology. 2020 Jun;158(8):2082-2092. doi: 10.1053/j.gastro.2020.02.037. Epub 2020 Feb 29.

Abstract

BACKGROUND & AIMS: Guidelines suggest endoscopic screening of individuals who are at increased risk for Barrett's esophagus (BE) and esophageal adenocarcinoma. Tools based on clinical factors are available for identifying patients at risk, but only some have been validated. We aimed to compare and validate available tools.

METHODS

We performed a prospective study of 1241 patients, ages 40 to 79 years, presenting either for their first esophagogastroduodenoscopy (EGD) or their first endoscopic therapy of early neoplastic BE, from April 2015 through June 2018. We calculated risk scores for 6 previously published tools (the Gerson, Locke, Thrift, Michigan BE pREdiction Tool [M-BERET], Nord-Trøndelag Health Study [HUNT], and Kunzmann tools). We also investigated the accuracy of frequency and duration of gastroesophageal reflux disease (GERD), using data from a randomly selected 50% of patients undergoing their first EGD. We compared the ability of all these tools to discriminate patients with BE and early neoplasia from patients without BE, using findings from endoscopy as the reference standard.

RESULTS

BE was detected in 81 of 1152 patients during their first EGD (7.0%). GERD symptoms alone identified patients with BE with an area under the receiver operating characteristic curve (AuROC) of 0.579. All of the tools were more accurate in identifying patients with BE than the frequency and duration of GERD (AuROC for GERD, 0.579 vs range for other tools, 0.660-0.695), and predicted risk correlated well with observed risk (calibration). The AUROCs of the HUNT tool (0.796), the M-BERET (0.773), and the Kunzmann tool (0.763) were comparable in discriminating between patients with early neoplasia (n = 94) vs no BE. Each tool was more accurate in discriminating BE with early neoplasia than GERD frequency and duration alone (AuROC, 0.667; P < .01).

CONCLUSIONS

The HUNT, M-BERET, and Kunzmann tools identify patients with BE with AuROC values ranging from 0.665 to 0.695, and discriminate patients with early neoplasia from patients without BE with AuROC values ranging from 0.763 to 0.796. These tools are more accurate than frequency and duration of GERD in identifying individuals at risk for neoplastic BE.

摘要

背景与目的

指南建议对患有巴雷特食管(BE)和食管腺癌风险增加的个体进行内镜筛查。目前已有基于临床因素的工具用于识别风险患者,但其中只有部分已得到验证。本研究旨在比较和验证现有工具。

方法

我们对 2015 年 4 月至 2018 年 6 月期间,年龄在 40 至 79 岁之间的 1241 名首次接受食管胃十二指肠镜检查(EGD)或早期肿瘤性 BE 内镜治疗的患者进行了前瞻性研究。我们计算了 6 种已发表工具(Gerson、Locke、Thrift、密歇根 BE 预测工具[M-BERET]、北特伦德拉格健康研究[HUNT]和 Kunzmann 工具)的风险评分。我们还研究了使用首次接受 EGD 的 50%患者的数据来评估胃食管反流病(GERD)频率和持续时间的准确性。我们将所有这些工具识别出具有 BE 和早期肿瘤的患者与不具有 BE 的患者的能力进行了比较,将内镜检查结果作为参考标准。

结果

在首次 EGD 中,1152 名患者中有 81 名(7.0%)发现了 BE。仅 GERD 症状即可识别出具有 BE 的患者,其接受者操作特征曲线(AUROC)为 0.579。所有工具在识别 BE 患者方面都比 GERD 频率和持续时间更准确(GERD 的 AUROC 为 0.579,其他工具的范围为 0.660-0.695),且预测风险与观察到的风险相关性良好(校准)。HUNT 工具(0.796)、M-BERET(0.773)和 Kunzmann 工具(0.763)在区分早期肿瘤患者(n=94)与无 BE 患者方面的 AUROC 相当。每个工具在区分具有早期肿瘤的 BE 与单独的 GERD 频率和持续时间方面都更准确(AUROC,0.667;P<0.01)。

结论

HUNT、M-BERET 和 Kunzmann 工具识别出具有 AUROC 值范围为 0.665 至 0.695 的 BE 患者,并识别出具有 AUROC 值范围为 0.763 至 0.796 的早期肿瘤患者与无 BE 患者。这些工具在识别患有肿瘤性 BE 的高危个体方面比 GERD 频率和持续时间更准确。

相似文献

10
Managing Barrett's esophagus: what is new in 2005?巴雷特食管的管理:2005年有哪些新进展?
Dis Esophagus. 2005;18(1):17-20. doi: 10.1111/j.1442-2050.2005.00451.x.

引用本文的文献

9
Advances in Screening for Barrett Esophagus and Esophageal Adenocarcinoma.巴雷特食管和食管腺癌筛查的进展。
Mayo Clin Proc. 2024 Mar;99(3):459-473. doi: 10.1016/j.mayocp.2023.07.014. Epub 2024 Jan 25.

本文引用的文献

3
Model for Identifying Individuals at Risk for Esophageal Adenocarcinoma.识别食管腺癌高危个体的模型。
Clin Gastroenterol Hepatol. 2018 Aug;16(8):1229-1236.e4. doi: 10.1016/j.cgh.2018.03.014. Epub 2018 Mar 17.
4
External Validation of the Michigan Barrett's Esophagus Prediction Tool.密歇根巴雷特食管预测工具的外部验证
Clin Gastroenterol Hepatol. 2017 Jul;15(7):1124-1126. doi: 10.1016/j.cgh.2017.03.004. Epub 2017 Mar 11.
5
ACG Clinical Guideline: Diagnosis and Management of Barrett's Esophagus.美国胃肠病学会临床指南:巴雷特食管的诊断与管理
Am J Gastroenterol. 2016 Jan;111(1):30-50; quiz 51. doi: 10.1038/ajg.2015.322. Epub 2015 Nov 3.
6
Risk factors for Barrett's esophagus.巴雷特食管的危险因素。
Curr Opin Gastroenterol. 2014 Jul;30(4):408-14. doi: 10.1097/MOG.0000000000000084.
7
A multibiomarker risk score helps predict risk for Barrett's esophagus.一种多生物标志物风险评分有助于预测巴雷特食管的风险。
Clin Gastroenterol Hepatol. 2014 Aug;12(8):1267-71. doi: 10.1016/j.cgh.2013.12.014. Epub 2013 Dec 19.
10
Prediction of Barrett's esophagus among men.男性 Barrett 食管的预测。
Am J Gastroenterol. 2013 Mar;108(3):353-62. doi: 10.1038/ajg.2012.446. Epub 2013 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验