文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过固定在壳聚糖纳米颗粒上提高溶菌酶的热稳定性和抗菌活性。

Enhancing the Thermo-Stability and Anti-Bacterium Activity of Lysozyme by Immobilization on Chitosan Nanoparticles.

机构信息

Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.

出版信息

Int J Mol Sci. 2020 Feb 27;21(5):1635. doi: 10.3390/ijms21051635.


DOI:10.3390/ijms21051635
PMID:32121010
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7084273/
Abstract

The recent emergence of antibiotic-resistant bacteria requires the development of new antibiotics or new agents capable of enhancing antibiotic activity. Lysozyme degrades bacterial cell wall without involving antibiotic resistance and has become a new antibacterial strategy. However, direct use of native, active proteins in clinical settings is not practical as it is fragile under various conditions. In this study, lysozyme was integrated into chitosan nanoparticles (CS-NPs) by the ionic gelation technique to obtain lysozyme immobilized chitosan nanoparticles (Lys-CS-NPs) and then characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM), which showed a small particle size (243.1 ± 2.1 nm) and positive zeta potential (22.8 ± 0.2 mV). The immobilization significantly enhanced the thermal stability and reusability of lysozyme. In addition, compared with free lysozyme, Lys-CS-NPs exhibited superb antibacterial properties according to the results of killing kinetics in vitro and measurement of the minimum inhibitory concentration (MIC) of CS-NPs and Lys-CS-NPs against Pseudomonas aeruginosa (P. aeruginosa), Klebsiella pneumoniae (K. pneumoniae), Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus). These results suggest that the integration of lysozyme into CS-NPs will create opportunities for the further potential applications of lysozyme as an anti-bacterium agent.

摘要

最近出现的抗生素耐药菌需要开发新的抗生素或能够增强抗生素活性的新制剂。溶菌酶在不涉及抗生素耐药性的情况下降解细菌细胞壁,已成为一种新的抗菌策略。然而,由于在各种条件下都很脆弱,直接在临床环境中使用天然、有活性的蛋白质并不实际。在这项研究中,溶菌酶通过离子凝胶技术整合到壳聚糖纳米粒子(CS-NPs)中,得到固定化溶菌酶壳聚糖纳米粒子(Lys-CS-NPs),并通过动态光散射(DLS)和透射电子显微镜(TEM)进行了表征,结果显示其粒径较小(243.1±2.1nm),且zeta 电位为正值(22.8±0.2mV)。固定化显著提高了溶菌酶的热稳定性和可重复使用性。此外,与游离溶菌酶相比,Lys-CS-NPs 具有出色的抗菌性能,根据体外杀菌动力学以及 CS-NPs 和 Lys-CS-NPs 对铜绿假单胞菌(P. aeruginosa)、肺炎克雷伯菌(K. pneumoniae)、大肠杆菌(E. coli)和金黄色葡萄球菌(S. aureus)的最小抑菌浓度(MIC)的测量结果均显示出这一特性。这些结果表明,将溶菌酶整合到 CS-NPs 中将为溶菌酶作为抗菌剂的进一步潜在应用创造机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0921/7084273/c86088e91c23/ijms-21-01635-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0921/7084273/acc2e4cecf7a/ijms-21-01635-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0921/7084273/6baf650bec83/ijms-21-01635-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0921/7084273/4ec095c971ce/ijms-21-01635-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0921/7084273/33a54e465614/ijms-21-01635-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0921/7084273/c86088e91c23/ijms-21-01635-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0921/7084273/acc2e4cecf7a/ijms-21-01635-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0921/7084273/6baf650bec83/ijms-21-01635-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0921/7084273/4ec095c971ce/ijms-21-01635-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0921/7084273/33a54e465614/ijms-21-01635-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0921/7084273/c86088e91c23/ijms-21-01635-g005.jpg

相似文献

[1]
Enhancing the Thermo-Stability and Anti-Bacterium Activity of Lysozyme by Immobilization on Chitosan Nanoparticles.

Int J Mol Sci. 2020-2-27

[2]
Integration of lysozyme into chitosan nanoparticles for improving antibacterial activity.

Carbohydr Polym. 2016-8-25

[3]
Incorporation of lysozyme into cellulose nanocrystals stabilized β-chitosan nanoparticles with enhanced antibacterial activity.

Carbohydr Polym. 2020-2-11

[4]
Enhancing the Thermo-Stability and Anti-Biofilm Activity of Alginate Lyase by Immobilization on Low Molecular Weight Chitosan Nanoparticles.

Int J Mol Sci. 2019-9-14

[5]
Preparation and antibacterial activity of compound chitosan-compound Yizhihao-nanoparticles.

Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2008-5

[6]
Preparation, characterization and evaluation of antibacterial activity of catechins and catechins-Zn complex loaded β-chitosan nanoparticles of different particle sizes.

Carbohydr Polym. 2015-10-22

[7]
Synthesis of chitosan-lysozyme microspheres, physicochemical characterization, enzymatic and antimicrobial activity.

Int J Biol Macromol. 2021-8-31

[8]
Enhanced antibacterial activity of lysozyme loaded quaternary ammonium chitosan nanoparticles functionalized with cellulose nanocrystals.

Int J Biol Macromol. 2021-11-30

[9]
Preparation and evaluation of lysozyme-loaded nanoparticles coated with poly-γ-glutamic acid and chitosan.

Int J Biol Macromol. 2013-4-26

[10]
Potent antibacterial nanoparticles for pathogenic bacteria.

ACS Appl Mater Interfaces. 2015-1-13

引用本文的文献

[1]
Rational protein engineering using an omni-directional multipoint mutagenesis generation pipeline.

iScience. 2025-8-5

[2]
Polysaccharide-Based Nanocarriers for Natural Antimicrobials: A Review.

Polymers (Basel). 2025-6-24

[3]
New advances in biological preservation technology for aquatic products.

NPJ Sci Food. 2025-2-3

[4]
Expression of BSN314 lysozyme genes in Escherichia coli BL21: a study to demonstrate microbicidal and disintegarting potential of the cloned lysozyme.

Braz J Microbiol. 2024-3

[5]
Bacteriophage Endolysin: A Powerful Weapon to Control Bacterial Biofilms.

Protein J. 2023-10

[6]
Integration of Lysin into Chitosan Nanoparticles for Improving Bacterial Biofilm Inhibition.

Appl Biochem Biotechnol. 2024-3

[7]
Development of Crosslinker-Free Polysaccharide-Lysozyme Microspheres for Treatment Enteric Infection.

Polymers (Basel). 2023-2-21

[8]
Purification, Characterization and Bactericidal Action of Lysozyme, Isolated from BSN314: A Disintegrating Effect of Lysozyme on Gram-Positive and Gram-Negative Bacteria.

Molecules. 2023-1-20

[9]
Lactobacillus rhamnosus and Staphylococcus epidermidis in gut microbiota: in vitro antimicrobial resistance.

AMB Express. 2022-10-3

[10]
The Effect of Trehalose Coating for Magnetite Nanoparticles on Stability of Egg White Lysozyme.

Int J Mol Sci. 2022-8-25

本文引用的文献

[1]
Lysozyme-Induced Transcriptional Regulation of TNF-α Pathway Genes in Cells of the Monocyte Lineage.

Int J Mol Sci. 2019-11-5

[2]
A Novel Fluorescence Resonance Energy Transfer-Based High-Throughput Screening Method for Generation of Lysozyme with Improved Antimicrobial Activity against Strains.

J Agric Food Chem. 2019-11-1

[3]
Maltose functionalized magnetic core/shell FeO@Au nanoparticles for an efficient l-asparaginase immobilization.

Int J Biol Macromol. 2019-10-5

[4]
Enhancing the Thermo-Stability and Anti-Biofilm Activity of Alginate Lyase by Immobilization on Low Molecular Weight Chitosan Nanoparticles.

Int J Mol Sci. 2019-9-14

[5]
Bacterial killing is enhanced by exogenous administration of lysozyme in the lungs.

Respir Med Res. 2019-7-20

[6]
Peptidoglycan O-Acetylation as a Virulence Factor: Its Effect on Lysozyme in the Innate Immune System.

Antibiotics (Basel). 2019-7-18

[7]
Definitions and guidelines for research on antibiotic persistence.

Nat Rev Microbiol. 2019-7

[8]
In Vitro Enzymatic Digestibility of Glutaraldehyde-Crosslinked Chitosan Nanoparticles in Lysozyme Solution and Their Applicability in Pulmonary Drug Delivery.

Molecules. 2019-4-1

[9]
Extracted chitosan disrupts quorum sensing mediated virulence factors in Urinary tract infection causing pathogens.

Pathog Dis. 2019-2-1

[10]
Methicillin-Resistant Staphylococcus aureus Prosthetic Valve Endocarditis: Pathophysiology, Epidemiology, Clinical Presentation, Diagnosis, and Management.

Clin Microbiol Rev. 2019-2-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索